File size: 4,531 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# coding=utf-8
# Based on the SQuAD evaluation script from:
# https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
""" Official evaluation script for v1.1 of the SQuAD dataset. """
from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""
    def remove_articles(text):
        return re.sub(r'\b(a|an|the)\b', ' ', text)

    def white_space_fix(text):
        return ' '.join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return ''.join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def f1_score(prediction, ground_truth):
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def exact_match_score(prediction, ground_truth):
    return (normalize_answer(prediction) == normalize_answer(ground_truth))


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def evaluate(dataset, predictions):
    f1 = exact_match = total = 0
    for article in dataset:
        for paragraph in article['paragraphs']:
            for qa in paragraph['qas']:
                total += 1
                if qa['id'] not in predictions:
                    message = 'Unanswered question ' + qa['id'] + \
                              ' will receive score 0.'
                    print(message, file=sys.stderr)
                    continue
                ground_truths = list(map(lambda x: x['text'], qa['answers']))
                prediction = predictions[qa['id']]
                exact_match += metric_max_over_ground_truths(
                    exact_match_score, prediction, ground_truths)
                f1 += metric_max_over_ground_truths(
                    f1_score, prediction, ground_truths)

    exact_match = 100.0 * exact_match / total
    f1 = 100.0 * f1 / total

    return {'exact_match': exact_match, 'f1': f1}


def evaluate_with_path(dataset_file, prediction_file):
    with open(dataset_file) as dataset_file_reader:
        dataset_json = json.load(dataset_file_reader)
        dataset = dataset_json['data']
    with open(prediction_file) as prediction_file_reader:
        predictions = json.load(prediction_file_reader)
    return evaluate(dataset, predictions)

if __name__ == '__main__':
    expected_version = '1.1'
    parser = argparse.ArgumentParser(
        description='Evaluation for SQuAD ' + expected_version)
    parser.add_argument('dataset_file', help='Dataset file')
    parser.add_argument('prediction_file', help='Prediction File')
    args = parser.parse_args()
    with open(args.dataset_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if (dataset_json['version'] != expected_version):
            print('Evaluation expects v-' + expected_version +
                  ', but got dataset with v-' + dataset_json['version'],
                  file=sys.stderr)
        dataset = dataset_json['data']
    with open(args.prediction_file) as prediction_file:
        predictions = json.load(prediction_file)
    print(json.dumps(evaluate(dataset, predictions)))