Spaces:
Sleeping
Sleeping
File size: 88,079 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
import argparse
import glob
import logging
import os
import random
import timeit
import itertools
import json
import copy
import math
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
WEIGHTS_NAME,
AdamW,
AlbertConfig,
AlbertForQuestionAnswering,
AlbertTokenizer,
BertConfig,
BertForQuestionAnswering,
BertTokenizer,
XLMRobertaConfig,
XLMRobertaForQuestionAnsweringStable,
XLMRobertaTokenizer,
CamembertConfig,
CamembertForQuestionAnswering,
CamembertTokenizer,
DistilBertConfig,
DistilBertForQuestionAnswering,
DistilBertTokenizer,
RobertaConfig,
RobertaForQuestionAnswering,
RobertaTokenizer,
XLMConfig,
XLMForQuestionAnswering,
XLMTokenizer,
XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
get_linear_schedule_with_warmup,
squad_convert_examples_to_features,
)
from transformers.data.metrics.squad_metrics import (
compute_predictions_log_probs,
compute_predictions_logits,
)
from transformers.data.metrics.evaluate_mlqa import evaluate_with_path as mlqa_evaluate_with_path
from transformers.data.metrics.evaluate_squad import evaluate_with_path as squad_evaluate_with_path
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor, MLQAProcessor, \
TyDiQAProcessor, XQuADProcessor
from transformers.tokenization_bert import whitespace_tokenize
from transformers.data.processors.squad import _improve_answer_span, _new_check_is_max_context, SquadFeatures
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
ALL_MODELS = sum(
(
tuple(conf.pretrained_config_archive_map.keys())
for conf in (BertConfig, CamembertConfig, RobertaConfig, XLNetConfig, XLMConfig)
),
(),
)
MODEL_CLASSES = {
"bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
"camembert": (CamembertConfig, CamembertForQuestionAnswering, CamembertTokenizer),
"roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
"xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
"xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
"distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
"albert": (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
"xlmr": (XLMRobertaConfig, XLMRobertaForQuestionAnsweringStable, XLMRobertaTokenizer),
}
class NoisedDataGenerator(object):
def __init__(self,
task_name="mlqa",
r1_lambda=5.0,
enable_r1_loss=False,
original_loss=True,
noised_loss=False,
keep_boundary_unchanged=False,
r1_on_boundary_only=False,
noised_max_seq_length=512,
max_seq_length=512,
doc_stride=128,
max_query_length=64,
overall_ratio=1.0,
enable_bpe_switch=False,
bpe_switch_ratio=0.5,
tokenizer_dir=None,
do_lower_case=False,
tokenizer_languages=None,
enable_bpe_sampling=False,
bpe_sampling_ratio=0.5,
tokenizer=None,
sampling_alpha=0.3,
sampling_nbest_size=-1,
enable_random_noise=False,
noise_detach_embeds=False,
noise_eps=1e-5,
noise_type='uniform',
enable_code_switch=False,
code_switch_ratio=0.5,
dict_dir=None,
dict_languages=None,
translation_path=None,
disable_translate_labels=False,
translate_languages=None,
enable_data_augmentation=False,
augment_ratio=0.0,
augment_method=None,
r2_lambda=1.0,
use_hard_labels=False):
if enable_code_switch:
assert dict_dir is not None
assert dict_languages is not None
assert tokenizer is not None
if enable_random_noise:
assert noise_type in ['uniform', 'normal']
self.task_name = task_name.lower()
self.n_tokens = 0
self.n_cs_tokens = 0
self.r1_lambda = r1_lambda
self.original_loss = original_loss
self.noised_loss = noised_loss
self.enable_r1_loss = enable_r1_loss
self.keep_boundary_unchanged = keep_boundary_unchanged
self.r1_on_boundary_only = r1_on_boundary_only
self.max_seq_length = max_seq_length
self.noised_max_seq_length = noised_max_seq_length
self.doc_stride = doc_stride
self.max_query_length = max_query_length
self.overall_ratio = overall_ratio
self.enable_bpe_switch = enable_bpe_switch
self.bpe_switch_ratio = bpe_switch_ratio / self.overall_ratio
assert not self.enable_bpe_switch or self.bpe_switch_ratio <= 1.0
self.tokenizer_dir = tokenizer_dir
self.tokenizer_languages = tokenizer_languages
self.enable_bpe_sampling = enable_bpe_sampling
self.bpe_sampling_ratio = bpe_sampling_ratio / self.overall_ratio
assert not self.enable_bpe_sampling or self.bpe_sampling_ratio <= 1.0
self.tokenizer = tokenizer
self.sampling_alpha = sampling_alpha
self.sampling_nbest_size = sampling_nbest_size
self.enable_random_noise = enable_random_noise
self.noise_detach_embeds = noise_detach_embeds
self.noise_eps = noise_eps
self.noise_type = noise_type
self.enable_code_switch = enable_code_switch
self.code_switch_ratio = code_switch_ratio / self.overall_ratio
assert not self.enable_code_switch or self.code_switch_ratio <= 1.0
self.dict_dir = dict_dir
self.dict_languages = dict_languages
self.lang2dict = {}
for lang in copy.deepcopy(dict_languages):
dict_path = os.path.join(self.dict_dir, "en-{}.txt".format(lang))
if not os.path.exists(dict_path):
logger.info("dictionary en-{} doesn't exist.".format(lang))
self.dict_languages.remove(lang)
continue
logger.info("reading dictionary from {}".format(dict_path))
assert os.path.exists(dict_path)
with open(dict_path, "r", encoding="utf-8") as reader:
raw = reader.readlines()
self.lang2dict[lang] = {}
for line in raw:
line = line.strip()
try:
src, tgt = line.split("\t")
except:
src, tgt = line.split(" ")
if src not in self.lang2dict[lang]:
self.lang2dict[lang][src] = [tgt]
else:
self.lang2dict[lang][src].append(tgt)
self.lang2tokenizer = {}
for lang in tokenizer_languages:
self.lang2tokenizer[lang] = XLMRobertaTokenizer.from_pretrained(
os.path.join(tokenizer_dir, "{}".format(lang)), do_lower_case=do_lower_case)
self.translation_path = translation_path
self.disable_translate_labels = disable_translate_labels
self.translate_languages = translate_languages
self.enable_data_augmentation = enable_data_augmentation
self.augment_ratio = augment_ratio
self.augment_method = augment_method
self.r2_lambda = r2_lambda
self.use_hard_labels = use_hard_labels
self.id2ex = None
if self.enable_data_augmentation and self.augment_method == "mt":
# drop_languages = ["en", "zh-CN", "zh", "ja", "ko", "th", "my", "ml", "ta"]
drop_languages = ["en"]
for lang in drop_languages:
if lang in self.translate_languages:
self.translate_languages.remove(lang)
self.id2ex = {}
for lang in self.translate_languages:
if self.task_name == "tydiqa":
file_name = "tydiqa.translate.train.en-{}.json".format(lang)
else:
file_name = "squad.translate.train.en-{}.json".format(lang)
logger.info("Reading translation from {}".format(os.path.join(self.translation_path, file_name)))
processor = MLQAProcessor()
examples = processor.get_train_examples(self.translation_path,
file_name)
for ex in examples:
if ex.qas_id not in self.id2ex:
self.id2ex[ex.qas_id] = []
if self.disable_translate_labels:
ex.is_impossible = True
self.id2ex[ex.qas_id].append(ex)
def augment_examples(self, examples):
n_augment = math.ceil(len(examples) * self.augment_ratio)
augment_examples = []
while n_augment > 0:
examples = copy.deepcopy(examples)
augment_examples += examples[:n_augment]
n_augment -= len(examples[:n_augment])
random.shuffle(examples)
return augment_examples
def get_translate_data(self, examples):
translate_examples = []
n_unfound = 0
qas_ids = list(self.id2ex.keys())
for ex_idx, example in enumerate(examples):
qas_id = example.qas_id
if self.task_name == "tydiqa" or qas_id not in self.id2ex:
rand_qas_id = qas_ids[random.randint(0, len(qas_ids) - 1)]
# logger.info(
# "qas_id {} is not found in translate data, using {} as replacement.".format(qas_id, rand_qas_id))
n_unfound += 1
qas_id = rand_qas_id
idx = random.randint(0, len(self.id2ex[qas_id]) - 1)
tgt_ex = self.id2ex[qas_id][idx]
translate_examples.append(tgt_ex)
logger.info("{} qas_ids unfound.".format(n_unfound))
return translate_examples
def get_noised_dataset(self, examples):
# maybe do not save augmented examples
examples = copy.deepcopy(examples)
is_augmented = [0] * len(examples)
if self.enable_data_augmentation:
augment_examples = self.augment_examples(examples)
if self.augment_method == "mt":
assert not self.enable_code_switch
augment_examples = self.get_translate_data(augment_examples)
is_augmented += [1] * len(augment_examples)
examples += augment_examples
if self.enable_code_switch:
self.n_tokens = 0
self.n_cs_tokens = 0
dataset = self.convert_examples_to_dataset(examples, is_augmented)
if self.enable_code_switch:
logger.info("{:.2f}% tokens have been code-switched.".format(self.n_cs_tokens / self.n_tokens * 100))
return dataset
def tokenize_token(self, token, switch_text=False, can_be_switched=True,
enable_code_switch=False,
enable_bpe_switch=False,
enable_bpe_sampling=False, ):
switch_token = (random.random() <= self.overall_ratio) and can_be_switched
is_switched = False
self.n_tokens += 1
if enable_code_switch and switch_text and switch_token and random.random() <= self.code_switch_ratio:
lang = self.dict_languages[random.randint(0, len(self.dict_languages) - 1)]
if token.lower() in self.lang2dict[lang]:
self.n_cs_tokens += 1
token = self.lang2dict[lang][token.lower()][
random.randint(0, len(self.lang2dict[lang][token.lower()]) - 1)]
is_switched = True
if enable_bpe_switch and switch_text and switch_token and random.random() <= self.bpe_switch_ratio:
lang = self.tokenizer_languages[random.randint(0, len(self.tokenizer_languages) - 1)]
tokenizer = self.lang2tokenizer[lang]
is_switched = True
else:
tokenizer = self.tokenizer
if enable_bpe_sampling and switch_text and switch_token and random.random() <= self.bpe_sampling_ratio:
sub_tokens = tokenizer.tokenize(token, nbest_size=self.sampling_nbest_size,
alpha=self.sampling_alpha)
is_switched = True
else:
sub_tokens = tokenizer.tokenize(token)
return sub_tokens, switch_token and is_switched
def tokenize_sentence(self, sentence, switch_text=False):
all_sub_tokens = []
tokens = sentence.split(" ")
for token in tokens:
sub_tokens, switch_token = self.tokenize_token(token, switch_text)
all_sub_tokens += sub_tokens
return all_sub_tokens
def convert_examples_to_dataset(self, examples, is_augmented=None, is_training=True):
all_original_input_ids = []
all_original_attention_mask = []
all_original_token_type_ids = []
all_original_r1_mask = []
all_original_start_positions = []
all_original_end_positions = []
all_noised_input_ids = []
all_noised_attention_mask = []
all_noised_token_type_ids = []
all_noised_r1_mask = []
all_noised_start_positions = []
all_noised_end_positions = []
all_is_augmented = []
for (ex_index, example) in enumerate(examples):
if is_training and not example.is_impossible:
# Get start and end position
start_position = example.start_position
end_position = example.end_position
# If the answer cannot be found in the text, then skip this example.
actual_text = " ".join(example.doc_tokens[start_position: (end_position + 1)])
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text)
# exit(0)
else:
start_position, end_position = None, None
if ex_index % 1000 == 0:
logger.info("Writing example %d/%d" % (ex_index, len(examples)))
# if ex_index == 1000:
# break
# switch all examples
switch_text = True
noised_orig_to_tok_index = []
noised_all_doc_tokens = []
noised_tok_to_orig_index = []
original_orig_to_tok_index = []
original_all_doc_tokens = []
original_tok_to_orig_index = []
is_token_switched = [False] * len(example.doc_tokens)
for (i, token) in enumerate(example.doc_tokens):
original_orig_to_tok_index.append(len(original_all_doc_tokens))
can_be_switched = False if self.keep_boundary_unchanged and (
i == start_position or i == end_position) else True
if self.enable_data_augmentation and is_augmented[ex_index]:
if self.augment_method == "cs":
if start_position <= i <= end_position:
can_be_switched = False
original_sub_tokens, switch_token = self.tokenize_token(token, switch_text,
can_be_switched=can_be_switched,
enable_code_switch=True)
elif self.augment_method == "ss":
original_sub_tokens, switch_token = self.tokenize_token(token, switch_text,
can_be_switched=can_be_switched,
enable_bpe_sampling=True)
elif self.augment_method == "mt" or self.augment_method == "gn":
original_sub_tokens, switch_token = self.tokenize_token(token, switch_text=False)
else:
assert False
else:
original_sub_tokens, switch_token = self.tokenize_token(token, switch_text=False)
# original_sub_tokens = self.tokenizer.tokenize(token)
is_token_switched[i] = is_token_switched[i] or switch_token
for sub_token in original_sub_tokens:
original_tok_to_orig_index.append(i)
original_all_doc_tokens.append(sub_token)
keep_answer_unchanged = False
if is_training and not example.is_impossible:
original_tok_start_position = original_orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
original_tok_end_position = original_orig_to_tok_index[example.end_position + 1] - 1
else:
original_tok_end_position = len(original_all_doc_tokens) - 1
(new_original_tok_start_position, new_original_tok_end_position) = _improve_answer_span(
original_all_doc_tokens, original_tok_start_position, original_tok_end_position, self.tokenizer,
example.answer_text
)
keep_answer_unchanged = (original_tok_start_position != new_original_tok_start_position) or (
original_tok_end_position != new_original_tok_end_position)
for (i, token) in enumerate(example.doc_tokens):
noised_orig_to_tok_index.append(len(noised_all_doc_tokens))
can_be_switched = False if self.keep_boundary_unchanged and (
i == start_position or i == end_position) else True
if keep_answer_unchanged and i >= start_position and i <= end_position:
can_be_switched = False
noised_sub_tokens, switch_token = self.tokenize_token(token, switch_text,
can_be_switched=can_be_switched,
enable_code_switch=self.enable_code_switch,
enable_bpe_switch=self.enable_bpe_switch,
enable_bpe_sampling=self.enable_bpe_sampling)
is_token_switched[i] = is_token_switched[i] or switch_token
for sub_token in noised_sub_tokens:
noised_tok_to_orig_index.append(i)
noised_all_doc_tokens.append(sub_token)
if is_training and not example.is_impossible:
noised_tok_start_position = noised_orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
noised_tok_end_position = noised_orig_to_tok_index[example.end_position + 1] - 1
else:
noised_tok_end_position = len(noised_all_doc_tokens) - 1
(noised_tok_start_position, noised_tok_end_position) = _improve_answer_span(
noised_all_doc_tokens, noised_tok_start_position, noised_tok_end_position, self.tokenizer,
example.answer_text
)
original_truncated_query = self.tokenizer.encode(example.question_text, add_special_tokens=False,
truncation=True, max_length=self.max_query_length)
noised_question_sub_tokens = self.tokenize_sentence(example.question_text, switch_text)
noised_truncated_query = self.tokenizer.encode(noised_question_sub_tokens, add_special_tokens=False,
truncation=True, max_length=self.max_query_length)
sequence_added_tokens = (
self.tokenizer.max_len - self.tokenizer.max_len_single_sentence + 1
if "roberta" in str(type(self.tokenizer)) or "camembert" in str(type(self.tokenizer))
else self.tokenizer.max_len - self.tokenizer.max_len_single_sentence
)
sequence_pair_added_tokens = self.tokenizer.max_len - self.tokenizer.max_len_sentences_pair
spans = []
span_doc_tokens = original_all_doc_tokens
while len(spans) * self.doc_stride < len(original_all_doc_tokens):
original_encoded_dict = self.tokenizer.encode_plus( # TODO(thom) update this logic
original_truncated_query if self.tokenizer.padding_side == "right" else span_doc_tokens,
span_doc_tokens if self.tokenizer.padding_side == "right" else original_truncated_query,
max_length=self.max_seq_length,
return_overflowing_tokens=True,
pad_to_max_length=True,
stride=self.max_seq_length - self.doc_stride - len(
original_truncated_query) - sequence_pair_added_tokens,
truncation_strategy="only_second" if self.tokenizer.padding_side == "right" else "only_first",
)
paragraph_len = min(
len(original_all_doc_tokens) - len(spans) * self.doc_stride,
self.max_seq_length - len(original_truncated_query) - sequence_pair_added_tokens,
)
if self.tokenizer.pad_token_id in original_encoded_dict["input_ids"]:
if self.tokenizer.padding_side == "right":
non_padded_ids = original_encoded_dict["input_ids"][
: original_encoded_dict["input_ids"].index(self.tokenizer.pad_token_id)]
else:
last_padding_id_position = (
len(original_encoded_dict["input_ids"]) - 1 - original_encoded_dict["input_ids"][
::-1].index(
self.tokenizer.pad_token_id)
)
non_padded_ids = original_encoded_dict["input_ids"][last_padding_id_position + 1:]
else:
non_padded_ids = original_encoded_dict["input_ids"]
tokens = self.tokenizer.convert_ids_to_tokens(non_padded_ids)
original_encoded_dict["tokens"] = tokens
original_encoded_dict["start"] = len(spans) * self.doc_stride
original_encoded_dict["length"] = paragraph_len
noised_tokens = []
noised_r1_mask = []
original_r1_mask = []
token_to_orig_map = {}
span_start = None
break_flag = False
for i in range(paragraph_len):
index = len(
original_truncated_query) + sequence_added_tokens + i if self.tokenizer.padding_side == "right" else i
token_to_orig_map[index] = original_tok_to_orig_index[len(spans) * self.doc_stride + i]
original_index = len(spans) * self.doc_stride + i
cur_orig_index = original_tok_to_orig_index[original_index]
pre_orig_index = original_tok_to_orig_index[original_index - 1] if i > 0 else -1
if not is_token_switched[cur_orig_index]:
noised_index = original_index - original_orig_to_tok_index[cur_orig_index] + \
noised_orig_to_tok_index[cur_orig_index]
assert original_all_doc_tokens[original_index] == noised_all_doc_tokens[noised_index]
if span_start is None:
span_start = noised_index
if len(noised_tokens) + len(
noised_truncated_query) + sequence_pair_added_tokens == self.noised_max_seq_length:
break
noised_tokens.append(noised_all_doc_tokens[noised_index])
noised_r1_mask.append(1)
elif is_token_switched[cur_orig_index] and cur_orig_index != pre_orig_index:
noised_index = noised_orig_to_tok_index[cur_orig_index]
while noised_index < len(noised_tok_to_orig_index):
if noised_tok_to_orig_index[noised_index] != cur_orig_index:
break
if span_start is None:
span_start = noised_index
if len(noised_tokens) + len(
noised_truncated_query) + sequence_pair_added_tokens == self.noised_max_seq_length:
break_flag = True
break
noised_tokens.append(noised_all_doc_tokens[noised_index])
noised_r1_mask.append(0)
noised_index += 1
if break_flag:
break
original_r1_mask.append(1 if not is_token_switched[cur_orig_index] else 0)
assert len(noised_tokens) + len(
noised_truncated_query) + sequence_pair_added_tokens <= self.noised_max_seq_length
if self.tokenizer.padding_side == "right":
noised_r1_mask = [0] * (len(noised_truncated_query) + 3) + noised_r1_mask + [0]
original_r1_mask = [0] * (len(original_truncated_query) + 3) + original_r1_mask + [0]
else:
assert False
noised_r1_mask += (self.noised_max_seq_length - len(noised_r1_mask)) * [0]
original_r1_mask += (self.max_seq_length - len(original_r1_mask)) * [0]
noised_encoded_dict = self.tokenizer.encode_plus( # TODO(thom) update this logic
noised_truncated_query if self.tokenizer.padding_side == "right" else noised_tokens,
noised_tokens if self.tokenizer.padding_side == "right" else original_truncated_query,
max_length=self.noised_max_seq_length,
pad_to_max_length=True,
truncation_strategy="only_second" if self.tokenizer.padding_side == "right" else "only_first",
)
if self.tokenizer.pad_token_id in noised_encoded_dict["input_ids"]:
if self.tokenizer.padding_side == "right":
non_padded_ids = noised_encoded_dict["input_ids"][
: noised_encoded_dict["input_ids"].index(self.tokenizer.pad_token_id)]
else:
last_padding_id_position = (
len(noised_encoded_dict["input_ids"]) - 1 - noised_encoded_dict["input_ids"][
::-1].index(
self.tokenizer.pad_token_id)
)
non_padded_ids = noised_encoded_dict["input_ids"][last_padding_id_position + 1:]
else:
non_padded_ids = noised_encoded_dict["input_ids"]
tokens = self.tokenizer.convert_ids_to_tokens(non_padded_ids)
noised_encoded_dict["tokens"] = tokens
noised_encoded_dict["r1_mask"] = noised_r1_mask
assert span_start is not None
noised_encoded_dict["start"] = span_start
noised_encoded_dict["length"] = len(noised_tokens)
original_encoded_dict["r1_mask"] = original_r1_mask
spans.append((original_encoded_dict, noised_encoded_dict))
if "overflowing_tokens" not in original_encoded_dict:
break
span_doc_tokens = original_encoded_dict["overflowing_tokens"]
for (original_span, noised_span) in spans:
# Identify the position of the CLS token
original_cls_index = original_span["input_ids"].index(self.tokenizer.cls_token_id)
noised_cls_index = noised_span["input_ids"].index(self.tokenizer.cls_token_id)
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implem also keep the classification token (set to 0) (not sure why...)
original_p_mask = np.array(original_span["token_type_ids"])
noised_p_mask = np.array(noised_span["token_type_ids"])
original_p_mask = np.minimum(original_p_mask, 1)
noised_p_mask = np.minimum(noised_p_mask, 1)
if self.tokenizer.padding_side == "right":
# Limit positive values to one
original_p_mask = 1 - original_p_mask
noised_p_mask = 1 - noised_p_mask
original_p_mask[np.where(np.array(original_span["input_ids"]) == self.tokenizer.sep_token_id)[0]] = 1
noised_p_mask[np.where(np.array(noised_span["input_ids"]) == self.tokenizer.sep_token_id)[0]] = 1
# Set the CLS index to '0'
original_p_mask[original_cls_index] = 0
noised_p_mask[noised_cls_index] = 0
# TODO cls_index in xlm-r is 0
assert original_cls_index == 0
assert noised_cls_index == 0
original_span["r1_mask"][original_cls_index] = 1
noised_span["r1_mask"][noised_cls_index] = 1
span_is_impossible = example.is_impossible
original_start_position = 0
original_end_position = 0
noised_start_position = 0
noised_end_position = 0
if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
noised_doc_start = noised_span["start"]
noised_doc_end = noised_span["start"] + noised_span["length"] - 1
noised_out_of_span = False
original_doc_start = original_span["start"]
original_doc_end = original_span["start"] + original_span["length"] - 1
original_out_of_span = False
if not (
noised_tok_start_position >= noised_doc_start and noised_tok_end_position <= noised_doc_end):
noised_out_of_span = True
if not (
new_original_tok_start_position >= original_doc_start and new_original_tok_end_position <= original_doc_end):
original_out_of_span = True
if noised_out_of_span:
noised_start_position = noised_cls_index
noised_end_position = noised_cls_index
span_is_impossible = True
else:
if self.tokenizer.padding_side == "left":
doc_offset = 0
else:
doc_offset = len(noised_truncated_query) + sequence_added_tokens
noised_start_position = noised_tok_start_position - noised_doc_start + doc_offset
noised_end_position = noised_tok_end_position - noised_doc_start + doc_offset
if original_out_of_span:
original_start_position = original_cls_index
original_end_position = original_cls_index
span_is_impossible = True
else:
if self.tokenizer.padding_side == "left":
doc_offset = 0
else:
doc_offset = len(original_truncated_query) + sequence_added_tokens
original_start_position = new_original_tok_start_position - original_doc_start + doc_offset
original_end_position = new_original_tok_end_position - original_doc_start + doc_offset
all_original_input_ids += [original_span["input_ids"]]
all_original_attention_mask += [original_span["attention_mask"]]
all_original_token_type_ids += [original_span["token_type_ids"]]
all_original_r1_mask += [original_span["r1_mask"]]
all_original_start_positions += [original_start_position]
all_original_end_positions += [original_end_position]
all_noised_input_ids += [noised_span["input_ids"]]
all_noised_attention_mask += [noised_span["attention_mask"]]
all_noised_token_type_ids += [noised_span["token_type_ids"]]
all_noised_r1_mask += [noised_span["r1_mask"]]
all_noised_start_positions += [noised_start_position]
all_noised_end_positions += [noised_end_position]
all_is_augmented += [is_augmented[ex_index]]
# Convert to Tensors and build dataset
all_original_input_ids = torch.tensor([input_ids for input_ids in all_original_input_ids], dtype=torch.long)
all_original_attention_mask = torch.tensor([attention_mask for attention_mask in all_original_attention_mask],
dtype=torch.long)
all_original_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_original_token_type_ids],
dtype=torch.long)
all_original_r1_mask = torch.tensor([original_r1_mask for original_r1_mask in all_original_r1_mask],
dtype=torch.long)
all_original_start_positions = torch.tensor([start_position for start_position in all_original_start_positions],
dtype=torch.long)
all_original_end_positions = torch.tensor([end_position for end_position in all_original_end_positions],
dtype=torch.long)
all_noised_input_ids = torch.tensor([input_ids for input_ids in all_noised_input_ids], dtype=torch.long)
all_noised_attention_mask = torch.tensor([attention_mask for attention_mask in all_noised_attention_mask],
dtype=torch.long)
all_noised_token_type_ids = torch.tensor([token_type_ids for token_type_ids in all_noised_token_type_ids],
dtype=torch.long)
all_noised_r1_mask = torch.tensor([noised_r1_mask for noised_r1_mask in all_noised_r1_mask],
dtype=torch.long)
all_noised_start_positions = torch.tensor([start_position for start_position in all_noised_start_positions],
dtype=torch.long)
all_noised_end_positions = torch.tensor([end_position for end_position in all_noised_end_positions],
dtype=torch.long)
all_is_augmented = torch.tensor([is_augmented for is_augmented in all_is_augmented])
dataset = TensorDataset(all_original_input_ids, all_original_attention_mask, all_original_token_type_ids,
all_original_start_positions, all_original_end_positions, all_original_attention_mask,
all_original_attention_mask, all_original_attention_mask,
all_noised_input_ids, all_noised_attention_mask, all_noised_token_type_ids,
all_noised_r1_mask, all_original_r1_mask, all_noised_start_positions,
all_noised_end_positions, all_is_augmented)
return dataset
def get_train_steps(self, examples, args):
if args.max_steps > 0:
t_total = args.max_steps
else:
assert False
return t_total
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_examples, train_dataset, model, first_stage_model, tokenizer, noised_data_generator=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_log_dir = os.getenv("PHILLY_JOB_DIRECTORY", None)
tb_writer = SummaryWriter(log_dir=tb_log_dir)
log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w')
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# args.warmup_steps == -1 means 0.1 warmup ratio
if args.warmup_steps == -1:
args.warmup_steps = int(t_total * 0.1)
logger.info("Warmup steps: %d" % args.warmup_steps)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss, best_avg_f1 = 0.0, 0.0, 0.0
tr_original_loss, logging_original_loss = 0.0, 0.0
tr_noised_loss, logging_noised_loss = 0.0, 0.0
tr_r1_loss, logging_r1_loss = 0.0, 0.0
tr_r2_loss, logging_r2_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
# Added here for reproductibility
set_seed(args)
def logging(eval=False):
results = None
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank in [-1, 0] and args.evaluate_during_training and eval:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
logger.info("eval_{}: {}".format(key, value))
# for key, value in results.items():
# tb_writer.add_scalar("eval_{}".format(key), value, global_step)
log_writer.write("{0}\t{1}".format(global_step, json.dumps(results)) + '\n')
log_writer.flush()
logger.info(
"global_step: {}, lr: {:.6f}, loss: {:.6f}, original_loss: {:.6f}, noised_loss: {:.6f}, r1_loss: {:.6f}, r2_loss: {:.6f}".format(
global_step, scheduler.get_lr()[0], (tr_loss - logging_loss) / args.logging_steps,
(tr_original_loss - logging_original_loss) / args.logging_steps,
(tr_noised_loss - logging_noised_loss) / args.logging_steps,
(tr_r1_loss - logging_r1_loss) / args.logging_steps,
(tr_r2_loss - logging_r2_loss) / args.logging_steps))
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
tb_writer.add_scalar("original_loss", (tr_original_loss - logging_original_loss) / args.logging_steps,
global_step)
tb_writer.add_scalar("noised_loss", (tr_noised_loss - logging_noised_loss) / args.logging_steps, global_step)
tb_writer.add_scalar("r1_loss", (tr_r1_loss - logging_r1_loss) / args.logging_steps, global_step)
tb_writer.add_scalar("r2_loss", (tr_r2_loss - logging_r2_loss) / args.logging_steps, global_step)
if results is not None:
return results["dev_avg"]["f1"]
else:
return None
for _ in train_iterator:
use_noised_ids = False
if noised_data_generator is not None:
assert noised_data_generator.enable_r1_loss or noised_data_generator.noised_loss or noised_data_generator.enable_data_augmentation
noised_train_dataset = noised_data_generator.get_noised_dataset(train_examples)
train_sampler = RandomSampler(noised_train_dataset) if args.local_rank == -1 else DistributedSampler(
noised_train_dataset)
train_dataloader = DataLoader(noised_train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True)
# epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
if first_stage_model is not None:
first_stage_model.eval()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"start_positions": batch[3],
"end_positions": batch[4],
}
if first_stage_model is not None:
with torch.no_grad():
inputs["first_stage_model_start_logits"], inputs["first_stage_model_end_logits"] = first_stage_model(**inputs)[1:3]
if noised_data_generator is not None:
inputs.update({"noised_input_ids": batch[8], "noised_attention_mask": batch[9],
"noised_token_type_ids": batch[10], "noised_r1_mask": batch[11],
"original_r1_mask": batch[12], "noised_start_positions": batch[13],
"noised_end_positions": batch[14], "is_augmented": batch[15]})
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if use_noised_ids:
del inputs["noised_token_type_ids"]
if args.model_type in ["xlnet", "xlm"]:
assert False
inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
if args.version_2_with_negative:
inputs.update({"is_impossible": batch[7]})
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
inputs.update(
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
)
outputs = model(**inputs)
# model outputs are always tuple in transformers (see doc)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if True or noised_data_generator is not None:
original_loss, noised_loss, r1_loss, r2_loss = outputs[1:5]
if args.n_gpu > 1:
original_loss = original_loss.mean()
noised_loss = noised_loss.mean()
r1_loss = r1_loss.mean()
r2_loss = r2_loss.mean()
if args.gradient_accumulation_steps > 1:
original_loss = original_loss / args.gradient_accumulation_steps
noised_loss = noised_loss / args.gradient_accumulation_steps
r1_loss = r1_loss / args.gradient_accumulation_steps
r2_loss = r2_loss / args.gradient_accumulation_steps
tr_original_loss += original_loss.item()
tr_noised_loss += noised_loss.item()
tr_r1_loss += r1_loss.item()
tr_r2_loss += r2_loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
cur_result = logging(eval=args.evaluate_steps > 0 and global_step % args.evaluate_steps == 0)
logging_loss = tr_loss
logging_original_loss = tr_original_loss
logging_noised_loss = tr_noised_loss
logging_r1_loss = tr_r1_loss
logging_r2_loss = tr_r2_loss
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.local_rank in [-1, 0] and args.logging_each_epoch:
avg_f1 = logging(eval=True)
logging_loss = tr_loss
logging_original_loss = tr_original_loss
logging_noised_loss = tr_noised_loss
logging_r1_loss = tr_r1_loss
logging_r2_loss = tr_r2_loss
if avg_f1 > best_avg_f1:
best_avg_f1 = avg_f1
output_dir = os.path.join(args.output_dir, "checkpoint-best")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
log_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
languages = args.language.split(',')
all_languages_results = {}
if args.task_name.lower() == "mlqa" or args.task_name == "mlqa_dev":
processor = MLQAProcessor()
elif args.task_name.lower() == "xquad":
processor = XQuADProcessor()
elif args.task_name.lower() == "tydiqa":
processor = TyDiQAProcessor()
elif args.task_name.lower() == "squad":
processor = SquadV1Processor()
else:
assert False
split_lang_list = []
# split_lang_list.append(("run_dev", "en"))
for lang in languages:
split_lang_list.append(("dev", lang))
if args.task_name.lower() == "mlqa":
for lang in languages:
split_lang_list.append(("test", lang))
for split, lang in split_lang_list:
# for split, lang in itertools.product(["dev", "test"], languages):
print("evaluating on {0} {1}".format(split, lang))
dataset, examples, features = load_and_cache_examples(args, tokenizer, language=lang, split=split,
output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
start_time = timeit.default_timer()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
}
if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
example_indices = batch[3]
# XLNet and XLM use more arguments for their predictions
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
# for lang_id-sensitive xlm models
if hasattr(model, "config") and hasattr(model.config, "lang2id"):
inputs.update(
{"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
)
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
output = [to_list(output[i]) for output in outputs]
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
# models only use two.
if len(output) >= 5:
start_logits = output[0]
start_top_index = output[1]
end_logits = output[2]
end_top_index = output[3]
cls_logits = output[4]
result = SquadResult(
unique_id,
start_logits,
end_logits,
start_top_index=start_top_index,
end_top_index=end_top_index,
cls_logits=cls_logits,
)
else:
start_logits, end_logits = output
result = SquadResult(unique_id, start_logits, end_logits)
all_results.append(result)
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "{}.prediction".format(lang))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}_{}_{}.json".format(prefix, split, lang))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir,
"null_odds_{}_{}_{}.json".format(prefix, split, lang))
else:
output_null_log_odds_file = None
# XLNet and XLM use a more complex post-processing procedure
if args.model_type in ["xlnet", "xlm"]:
start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top
predictions = compute_predictions_log_probs(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
start_n_top,
end_n_top,
args.version_2_with_negative,
tokenizer,
args.verbose_logging,
)
else:
predictions = compute_predictions_logits(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
args.verbose_logging,
args.version_2_with_negative,
args.null_score_diff_threshold,
tokenizer,
map_to_origin=not (args.model_type == "xlmr" and (lang == 'zh' or lang == "ko")),
# map_to_origin=False,
)
# Compute the F1 and exact scores.
if args.task_name.lower() == "mlqa" or args.task_name.lower() == "mlqa_dev":
results = mlqa_evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang),
output_prediction_file, lang)
else:
results = squad_evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang),
output_prediction_file)
# results = squad_evaluate(examples, predictions)
# results = evaluate_with_path(processor.get_dataset_path(args.data_dir, split, lang), output_prediction_file,
# lang)
all_languages_results["{0}_{1}".format(split, lang)] = results
for split in ["dev", "test"]:
all_languages_results["{0}_avg".format(split)] = average_dic(
[value for key, value in all_languages_results.items() if split in key])
return all_languages_results
def average_dic(dic_list):
if len(dic_list) == 0:
return {}
dic_sum = {}
for dic in dic_list:
if len(dic_sum) == 0:
for key, value in dic.items():
dic_sum[key] = value
else:
assert set(dic_sum.keys()) == set(dic.keys()), "sum_keys:{0}, dic_keys:{1}".format(set(dic_sum.keys()),
set(dic.keys()))
for key, value in dic.items():
dic_sum[key] += value
for key in dic_sum:
dic_sum[key] /= len(dic_list)
return dic_sum
def load_and_cache_examples(args, tokenizer, language, split="train", output_examples=False):
if args.local_rank not in [-1, 0] and split == "train":
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
# Load data features from cache or dataset file
input_dir = args.data_dir if args.data_dir else "."
model_name = "xlmr-base-final"
cached_features_file = os.path.join(
input_dir,
"cached_{}_{}_{}_{}".format(
split,
language,
model_name,
str(args.max_seq_length),
),
)
# Init features and dataset from cache if it exists
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
features, dataset, examples = (
features_and_dataset["features"],
features_and_dataset["dataset"],
features_and_dataset["examples"],
)
else:
logger.info("Creating features from dataset file at %s", input_dir)
if not args.data_dir and (
(split != "train" and not args.predict_file) or (split == "train" and not args.train_file)):
raise ValueError("data dir can't be empty")
try:
import tensorflow_datasets as tfds
except ImportError:
raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
if args.version_2_with_negative:
logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
else:
# processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if args.task_name.lower() == "mlqa" or args.task_name.lower() == "mlqa_dev":
processor = MLQAProcessor()
elif args.task_name.lower() == "xquad":
processor = XQuADProcessor()
elif args.task_name.lower() == "tydiqa":
processor = TyDiQAProcessor()
elif args.task_name.lower() == "squad":
processor = SquadV1Processor()
else:
assert False
if split == "run_dev":
examples = processor.get_dev_examples(args.data_dir)
elif split == "dev":
if args.task_name.lower() == "squad":
examples = processor.get_dev_examples(args.data_dir)
else:
examples = processor.get_dev_examples_by_language(args.data_dir, language=language)
elif split == "test":
examples = processor.get_test_examples_by_language(args.data_dir, language=language)
else:
examples = processor.get_train_examples(args.data_dir)
features, dataset = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=split == "train",
return_dataset="pt",
threads=args.threads,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
if args.local_rank == 0 and split == "train":
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
if output_examples:
return dataset, examples, features
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
)
parser.add_argument(
"--reload",
default="",
type=str,
help="path to infoxlm checkpoint",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
parser.add_argument(
"--task_name",
default="mlqa",
type=str,
help="task_name",
)
# stable fine-tuning paramters
parser.add_argument("--overall_ratio", default=1.0, type=float, help="overall ratio")
parser.add_argument("--enable_r1_loss", action="store_true", help="Whether to enable r1 loss.")
parser.add_argument("--r1_lambda", default=5.0, type=float, help="lambda of r1 loss")
parser.add_argument("--original_loss", action="store_true",
help="Whether to use cross entropy loss on the former example.")
parser.add_argument("--noised_loss", action="store_true",
help="Whether to use cross entropy loss on the latter example.")
parser.add_argument("--noised_max_seq_length", default=512, type=int, help="noised max sequence length")
parser.add_argument("--keep_boundary_unchanged", action="store_true",
help="Whether to keep the boundary of answer unchanged.")
parser.add_argument("--r1_on_boundary_only", action="store_true",
help="Whether to enable r1 loss on boundary only.")
parser.add_argument("--enable_bpe_switch", action="store_true", help="Whether to enable bpe-switch.")
parser.add_argument("--bpe_switch_ratio", default=0.5, type=float, help="bpe_switch_ratio")
parser.add_argument("--tokenizer_dir", default=None, type=str, help="tokenizer dir")
parser.add_argument("--tokenizer_languages", default=None, type=str, help="tokenizer languages")
parser.add_argument("--enable_bpe_sampling", action="store_true", help="Whether to enable bpe sampling.")
parser.add_argument("--bpe_sampling_ratio", default=0.5, type=float, help="bpe_sampling_ratio")
parser.add_argument("--sampling_alpha", default=5.0, type=float, help="alpha of sentencepiece sampling")
parser.add_argument("--sampling_nbest_size", default=-1, type=int, help="nbest_size of sentencepiece sampling")
parser.add_argument("--enable_random_noise", action="store_true", help="Whether to enable random noise.")
parser.add_argument("--noise_detach_embeds", action="store_true", help="Whether to detach noised embeddings.")
parser.add_argument("--noise_eps", default=1e-5, type=float, help="noise eps")
parser.add_argument('--noise_type', type=str, default='uniform',
choices=['normal', 'uniform'],
help='type of noises for RXF methods')
parser.add_argument("--enable_code_switch", action="store_true", help="Whether to enable code switch.")
parser.add_argument("--code_switch_ratio", default=0.5, type=float, help="code_switch_ratio")
parser.add_argument("--dict_dir", default=None, type=str, help="dict dir")
parser.add_argument("--dict_languages", default=None, type=str, help="dict languages")
parser.add_argument("--enable_translate_data", action="store_true",
help="Whether to enable translate data.")
parser.add_argument("--translation_path", default=None, type=str, help="path to translation")
parser.add_argument("--disable_translate_labels", action="store_true", help="Whether to disable translate labels.")
parser.add_argument("--translate_languages", default=None, type=str, help="translate languages")
parser.add_argument("--translate_augment_ratio", default=0.0, type=float, help="translate augment ratio")
parser.add_argument("--enable_data_augmentation", action="store_true", help="Whether to enable data augmentation.")
parser.add_argument("--augment_ratio", default=1.0, type=float, help="augmentation ratio.")
parser.add_argument("--augment_method", default=None, type=str, required=False, help="augment_method")
parser.add_argument("--first_stage_model_path", default=None, type=str, required=False,
help="stable model path")
parser.add_argument("--r2_lambda", default=1.0, type=float, required=False,
help="r2_lambda")
parser.add_argument("--use_hard_labels", action="store_true", help="Whether to use hard labels.")
# Other parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
help="The input data dir. Should contain the .json files for the task."
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.",
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.",
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.",
)
parser.add_argument(
"--verbose_logging",
action="store_true",
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.",
)
parser.add_argument(
"--lang_id",
default=0,
type=int,
help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
)
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--evaluate_steps", type=int, default=0, help="Log every X updates steps.")
parser.add_argument("--logging_each_epoch", action="store_true", help="Whether to log after each epoch.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
# cross-lingual part
parser.add_argument(
"--language",
default=None,
type=str,
required=True,
help="Evaluation language. Also train language if `train_language` is set to None.",
)
parser.add_argument(
"--train_language", default=None, type=str, help="Train language if is different of the evaluation language."
)
args = parser.parse_args()
if args.doc_stride >= args.max_seq_length - args.max_query_length:
logger.warning(
"WARNING - You've set a doc stride which may be superior to the document length in some "
"examples. This could result in errors when building features from the examples. Please reduce the doc "
"stride or increase the maximum length to ensure the features are correctly built."
)
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.enable_r1_loss or args.noised_loss or args.enable_translate_data or args.enable_data_augmentation:
noised_data_generator = NoisedDataGenerator(
task_name=args.task_name,
r1_lambda=args.r1_lambda,
enable_r1_loss=args.enable_r1_loss,
original_loss=args.original_loss,
noised_loss=args.noised_loss,
keep_boundary_unchanged=args.keep_boundary_unchanged,
r1_on_boundary_only=args.r1_on_boundary_only,
noised_max_seq_length=args.noised_max_seq_length,
max_seq_length=args.max_seq_length,
max_query_length=args.max_query_length,
doc_stride=args.doc_stride,
overall_ratio=args.overall_ratio,
enable_bpe_switch=args.enable_bpe_switch,
bpe_switch_ratio=args.bpe_switch_ratio,
tokenizer_dir=args.tokenizer_dir,
do_lower_case=args.do_lower_case,
tokenizer_languages=args.tokenizer_languages.split(',') if args.tokenizer_languages is not None else [],
enable_bpe_sampling=args.enable_bpe_sampling,
bpe_sampling_ratio=args.bpe_sampling_ratio,
tokenizer=tokenizer,
sampling_alpha=args.sampling_alpha,
sampling_nbest_size=args.sampling_nbest_size,
enable_random_noise=args.enable_random_noise,
noise_detach_embeds=args.noise_detach_embeds,
noise_eps=args.noise_eps,
noise_type=args.noise_type,
enable_code_switch=args.enable_code_switch,
code_switch_ratio=args.code_switch_ratio,
dict_dir=args.dict_dir,
dict_languages=args.dict_languages.split(',') if args.dict_languages is not None else [],
translation_path=args.translation_path,
disable_translate_labels=args.disable_translate_labels,
translate_languages=args.translate_languages.split(
',') if args.translate_languages is not None else args.language.split(','),
enable_data_augmentation=args.enable_data_augmentation,
augment_ratio=args.augment_ratio,
augment_method=args.augment_method,
r2_lambda=args.r2_lambda,
use_hard_labels=args.use_hard_labels,
)
else:
noised_data_generator = None
if args.first_stage_model_path is not None:
first_stage_model = model_class.from_pretrained(args.first_stage_model_path,
config=config)
else:
first_stage_model = None
state_dict = None
if args.reload != "":
from tools.dump_hf_state_dict import convert_pt_to_hf
state_dict = convert_pt_to_hf(os.path.join(args.model_name_or_path, 'pytorch_model.bin'), args.reload, logger)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
noised_data_generator=noised_data_generator,
cache_dir=args.cache_dir if args.cache_dir else None,
state_dict=state_dict,
)
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model.to(args.device)
if first_stage_model is not None:
first_stage_model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
# Training
if args.do_train:
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
train_dataset, train_examples, _ = load_and_cache_examples(args, tokenizer, language=args.train_language,
split="train", output_examples=True)
global_step, tr_loss = train(args, train_examples, train_dataset, model, first_stage_model, tokenizer,
noised_data_generator=noised_data_generator)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir) # , force_download=True)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
if args.do_train:
logger.info("Loading checkpoints saved during training for evaluation")
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c)
for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
else:
logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
checkpoints = [args.model_name_or_path]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "test"
model = model_class.from_pretrained(checkpoint) # , force_download=True)
model.to(args.device)
# Evaluate
log_writer = open(os.path.join(args.output_dir, "evaluate_logs.txt"), 'w')
result = evaluate(args, model, tokenizer, prefix=global_step)
# result = squad(args, model, tokenizer, prefix=global_step)
log_writer.write("{0}\t{1}".format(global_step, json.dumps(result)) + '\n')
result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
logger.info("Task MLQA Finished!")
return results
if __name__ == "__main__":
main()
|