Spaces:
Sleeping
Sleeping
File size: 59,741 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
import os
import torch
import collections
import logging
from tqdm import tqdm, trange
import json
import bs4
from os import path as osp
from bs4 import BeautifulSoup as bs
# from transformers.models.bert.tokenization_bert import BasicTokenizer, whitespace_tokenize
from torch.utils.data import Dataset
import networkx as nx
from lxml import etree
import pickle
# from transformers.tokenization_bert import BertTokenizer
from transformers import BertTokenizer
import argparse
tags_dict = {'a': 0, 'abbr': 1, 'acronym': 2, 'address': 3, 'altGlyph': 4, 'altGlyphDef': 5, 'altGlyphItem': 6,
'animate': 7, 'animateColor': 8, 'animateMotion': 9, 'animateTransform': 10, 'applet': 11, 'area': 12,
'article': 13, 'aside': 14, 'audio': 15, 'b': 16, 'base': 17, 'basefont': 18, 'bdi': 19, 'bdo': 20,
'bgsound': 21, 'big': 22, 'blink': 23, 'blockquote': 24, 'body': 25, 'br': 26, 'button': 27, 'canvas': 28,
'caption': 29, 'center': 30, 'circle': 31, 'cite': 32, 'clipPath': 33, 'code': 34, 'col': 35,
'colgroup': 36, 'color-profile': 37, 'content': 38, 'cursor': 39, 'data': 40, 'datalist': 41, 'dd': 42,
'defs': 43, 'del': 44, 'desc': 45, 'details': 46, 'dfn': 47, 'dialog': 48, 'dir': 49, 'div': 50, 'dl': 51,
'dt': 52, 'ellipse': 53, 'em': 54, 'embed': 55, 'feBlend': 56, 'feColorMatrix': 57,
'feComponentTransfer': 58, 'feComposite': 59, 'feConvolveMatrix': 60, 'feDiffuseLighting': 61,
'feDisplacementMap': 62, 'feDistantLight': 63, 'feFlood': 64, 'feFuncA': 65, 'feFuncB': 66, 'feFuncG': 67,
'feFuncR': 68, 'feGaussianBlur': 69, 'feImage': 70, 'feMerge': 71, 'feMergeNode': 72, 'feMorphology': 73,
'feOffset': 74, 'fePointLight': 75, 'feSpecularLighting': 76, 'feSpotLight': 77, 'feTile': 78,
'feTurbulence': 79, 'fieldset': 80, 'figcaption': 81, 'figure': 82, 'filter': 83, 'font-face-format': 84,
'font-face-name': 85, 'font-face-src': 86, 'font-face-uri': 87, 'font-face': 88, 'font': 89, 'footer': 90,
'foreignObject': 91, 'form': 92, 'frame': 93, 'frameset': 94, 'g': 95, 'glyph': 96, 'glyphRef': 97,
'h1': 98, 'h2': 99, 'h3': 100, 'h4': 101, 'h5': 102, 'h6': 103, 'head': 104, 'header': 105, 'hgroup': 106,
'hkern': 107, 'hr': 108, 'html': 109, 'i': 110, 'iframe': 111, 'image': 112, 'img': 113, 'input': 114,
'ins': 115, 'kbd': 116, 'keygen': 117, 'label': 118, 'legend': 119, 'li': 120, 'line': 121,
'linearGradient': 122, 'link': 123, 'main': 124, 'map': 125, 'mark': 126, 'marker': 127, 'marquee': 128,
'mask': 129, 'math': 130, 'menu': 131, 'menuitem': 132, 'meta': 133, 'metadata': 134, 'meter': 135,
'missing-glyph': 136, 'mpath': 137, 'nav': 138, 'nobr': 139, 'noembed': 140, 'noframes': 141,
'noscript': 142, 'object': 143, 'ol': 144, 'optgroup': 145, 'option': 146, 'output': 147, 'p': 148,
'param': 149, 'path': 150, 'pattern': 151, 'picture': 152, 'plaintext': 153, 'polygon': 154,
'polyline': 155, 'portal': 156, 'pre': 157, 'progress': 158, 'q': 159, 'radialGradient': 160, 'rb': 161,
'rect': 162, 'rp': 163, 'rt': 164, 'rtc': 165, 'ruby': 166, 's': 167, 'samp': 168, 'script': 169,
'section': 170, 'select': 171, 'set': 172, 'shadow': 173, 'slot': 174, 'small': 175, 'source': 176,
'spacer': 177, 'span': 178, 'stop': 179, 'strike': 180, 'strong': 181, 'style': 182, 'sub': 183,
'summary': 184, 'sup': 185, 'svg': 186, 'switch': 187, 'symbol': 188, 'table': 189, 'tbody': 190,
'td': 191, 'template': 192, 'text': 193, 'textPath': 194, 'textarea': 195, 'tfoot': 196, 'th': 197,
'thead': 198, 'time': 199, 'title': 200, 'tr': 201, 'track': 202, 'tref': 203, 'tspan': 204, 'tt': 205,
'u': 206, 'ul': 207, 'use': 208, 'var': 209, 'video': 210, 'view': 211, 'vkern': 212, 'wbr': 213,
'xmp': 214}
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
# ---------- copied ! --------------
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join([w for w in doc_tokens[new_start:(new_end + 1)]
if w[0] != '<' or w[-1] != '>'])
if text_span == tok_answer_text:
return new_start, new_end
return input_start, input_end
class StrucDataset(Dataset):
"""Dataset wrapping tensors.
Each sample will be retrieved by indexing tensors along the first dimension.
Arguments:
*tensors (*torch.Tensor): tensors that have the same size of the first dimension.
page_ids (list): the corresponding page ids of the input features.
cnn_feature_dir (str): the direction where the cnn features are stored.
token_to_tag (torch.Tensor): the mapping from each token to its corresponding tag id.
"""
def __init__(self, *tensors, pad_id=0,
all_expended_attention_mask=None,
all_graph_names=None,
all_token_to_tag=None,
page_ids=None,
attention_width=None,
has_tree_attention_bias = False):
tensors = tuple(tensor for tensor in tensors)
assert all(len(tensors[0]) == len(tensor) for tensor in tensors)
if all_expended_attention_mask is not None:
assert len(tensors[0]) == len(all_expended_attention_mask)
tensors += (all_expended_attention_mask,)
self.tensors = tensors
self.page_ids = page_ids
self.all_graph_names = all_graph_names
self.all_token_to_tag = all_token_to_tag
self.pad_id = pad_id
self.attention_width = attention_width
self.has_tree_attention_bias = has_tree_attention_bias
def __getitem__(self, index):
output = [tensor[index] for tensor in self.tensors]
input_id = output[0]
attention_mask = output[1]
if not self.attention_width is None or self.has_tree_attention_bias:
assert self.all_graph_names is not None , ("For non-empty attention_width / tree rel pos,"
"Graph names must be sent in!")
if self.all_graph_names is not None:
assert self.all_token_to_tag is not None
graph_name = self.all_graph_names[index]
token_to_tag = self.all_token_to_tag[index]
with open(graph_name,"rb") as f:
node_pairs_lengths = pickle.load(f)
# node_pairs_lengths = dict(nx.all_pairs_shortest_path_length(graph))
seq_len = len(token_to_tag)
if self.has_tree_attention_bias:
mat = [[0]*seq_len]*seq_len
else:
mat = None
if self.attention_width is not None:
emask = attention_mask.expand(seq_len,seq_len)
else:
emask = None
for nid in range(seq_len):
if input_id[nid]==self.pad_id:
break
for anid in range(nid+1,seq_len):
if input_id[anid]==self.pad_id:
break
x_tid4nid = token_to_tag[nid]
x_tid4anid = token_to_tag[anid]
if x_tid4nid==x_tid4anid:
continue
try:
xx = node_pairs_lengths[x_tid4nid]
# x_tid4nid in valid tid list, or == -1
except:
# x_tid4nid out of bound, like `question`, `sep` or `cls`
xx = node_pairs_lengths[-1]
x_tid4nid=-1
try:
dis = xx[x_tid4anid]
# x_tid4anid in valid tid list, or == -1
except:
# x_tid4nid out of bound, like `question`, `sep` or `cls`
dis = xx[-1]
x_tid4anid = -1
# xx = node_pairs_lengths.get(tid4nid,node_pairs_lengths[-1])
# dis = xx.get(tid4anid,xx[-1])
if self.has_tree_attention_bias:
if x_tid4nid<x_tid4anid:
mat[nid][anid]=dis
mat[anid][nid]=-dis
else:
mat[nid][anid] = -dis
mat[anid][nid] = dis
if self.attention_width is not None:
# [nid][anid] determines whether nid can see anid
if x_tid4nid==-1 or x_tid4anid==-1: # sep / cls / question / pad
continue
if dis>self.attention_width:
emask[nid][anid]=0
emask[anid][nid]=0
if self.attention_width is not None:
output.append(emask)
if self.has_tree_attention_bias:
t_mat = torch.tensor(mat,dtype=torch.long)
output.append(t_mat)
return tuple(item for item in output)
def __len__(self):
return len(self.tensors[0])
def get_xpath4tokens(html_fn: str, unique_tids: set):
xpath_map = {}
tree = etree.parse(html_fn, etree.HTMLParser())
nodes = tree.xpath('//*')
for node in nodes:
tid = node.attrib.get("tid")
if int(tid) in unique_tids:
xpath_map[int(tid)] = tree.getpath(node)
xpath_map[len(nodes)] = "/html"
xpath_map[len(nodes) + 1] = "/html"
return xpath_map
def get_xpath_and_treeid4tokens(html_code, unique_tids, max_depth):
unknown_tag_id = len(tags_dict)
pad_tag_id = unknown_tag_id + 1
max_width = 1000
width_pad_id = 1001
pad_x_tag_seq = [pad_tag_id] * max_depth
pad_x_subs_seq = [width_pad_id] * max_depth
pad_x_box = [0,0,0,0]
pad_tree_id_seq = [width_pad_id] * max_depth
def xpath_soup(element):
xpath_tags = []
xpath_subscripts = []
tree_index = []
child = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
siblings = parent.find_all(child.name, recursive=False)
para_siblings = parent.find_all(True, recursive=False)
xpath_tags.append(child.name)
xpath_subscripts.append(
0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child))
tree_index.append(next(i for i, s in enumerate(para_siblings, 0) if s is child))
child = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
tree_index.reverse()
return xpath_tags, xpath_subscripts, tree_index
xpath_tag_map = {}
xpath_subs_map = {}
tree_id_map = {}
for tid in unique_tids:
element = html_code.find(attrs={'tid': tid})
if element is None:
xpath_tags = pad_x_tag_seq
xpath_subscripts = pad_x_subs_seq
tree_index = pad_tree_id_seq
xpath_tag_map[tid] = xpath_tags
xpath_subs_map[tid] = xpath_subscripts
tree_id_map[tid] = tree_index
continue
xpath_tags, xpath_subscripts, tree_index = xpath_soup(element)
assert len(xpath_tags) == len(xpath_subscripts)
assert len(xpath_tags) == len(tree_index)
if len(xpath_tags) > max_depth:
xpath_tags = xpath_tags[-max_depth:]
xpath_subscripts = xpath_subscripts[-max_depth:]
# tree_index = tree_index[-max_depth:]
xpath_tags = [tags_dict.get(name, unknown_tag_id) for name in xpath_tags]
xpath_subscripts = [min(i, max_width) for i in xpath_subscripts]
tree_index = [min(i, max_width) for i in tree_index]
# we do not append them to max depth here
xpath_tags += [pad_tag_id] * (max_depth - len(xpath_tags))
xpath_subscripts += [width_pad_id] * (max_depth - len(xpath_subscripts))
# tree_index += [width_pad_id] * (max_depth - len(tree_index))
xpath_tag_map[tid] = xpath_tags
xpath_subs_map[tid] = xpath_subscripts
tree_id_map[tid] = tree_index
return xpath_tag_map, xpath_subs_map, tree_id_map
# ---------- copied ! --------------
def _check_is_max_context(doc_spans, cur_span_index, position):
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
class SRCExample(object):
r"""
The Containers for SRC Examples.
Arguments:
doc_tokens (list[str]): the original tokens of the HTML file before dividing into sub-tokens.
qas_id (str): the id of the corresponding question.
tag_num (int): the total tag number in the corresponding HTML file, including the additional 'yes' and 'no'.
question_text (str): the text of the corresponding question.
orig_answer_text (str): the answer text provided by the dataset.
all_doc_tokens (list[str]): the sub-tokens of the corresponding HTML file.
start_position (int): the position where the answer starts in the all_doc_tokens.
end_position (int): the position where the answer ends in the all_doc_tokens; NOTE that the answer tokens
include the token at end_position.
tok_to_orig_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to origin tokens (doc_tokens).
orig_to_tok_index (list[int]): the mapping from origin tokens (doc_tokens) to sub-tokens (all_doc_tokens).
tok_to_tags_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to the id of the deepest tag it
belongs to.
"""
# the difference between T-PLM and H-PLM is just add <xx> and </xx> into the
# original tokens and further-tokenized tokens
def __init__(self,
doc_tokens,
qas_id,
tag_num, # <xx> ?? </xx> is counted as one tag
question_text=None,
html_code=None,
orig_answer_text=None,
start_position=None, # in all_doc_tokens
end_position=None, # in all_doc_tokens
tok_to_orig_index=None,
orig_to_tok_index=None,
all_doc_tokens=None,
tok_to_tags_index=None,
xpath_tag_map=None,
xpath_subs_map=None,
xpath_box=None,
tree_id_map=None,
visible_matrix=None,
):
self.doc_tokens = doc_tokens
self.qas_id = qas_id
self.tag_num = tag_num
self.question_text = question_text
self.html_code = html_code
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.tok_to_orig_index = tok_to_orig_index
self.orig_to_tok_index = orig_to_tok_index
self.all_doc_tokens = all_doc_tokens
self.tok_to_tags_index = tok_to_tags_index
self.xpath_tag_map = xpath_tag_map
self.xpath_subs_map = xpath_subs_map
self.xpath_box = xpath_box
self.tree_id_map = tree_id_map
self.visible_matrix = visible_matrix
def __str__(self):
return self.__repr__()
def __repr__(self):
"""
s = ""
s += "qas_id: %s" % self.qas_id
s += ", question_text: %s" % (
self.question_text)
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % self.start_position
if self.end_position:
s += ", end_position: %d" % self.end_position
"""
s = "[INFO]\n"
s += f"qas_id ({type(self.qas_id)}): {self.qas_id}\n"
s += f"tag_num ({type(self.tag_num)}): {self.tag_num}\n"
s += f"question_text ({type(self.question_text)}): {self.question_text}\n"
s += f"html_code ({type(self.html_code)}): {self.html_code}\n"
s += f"orig_answer_text ({type(self.orig_answer_text)}): {self.orig_answer_text}\n"
s += f"start_position ({type(self.start_position)}): {self.start_position}\n"
s += f"end_position ({type(self.end_position)}): {self.end_position}\n"
s += f"tok_to_orig_index ({type(self.tok_to_orig_index)}): {self.tok_to_orig_index}\n"
s += f"orig_to_tok_index ({type(self.orig_to_tok_index)}): {self.orig_to_tok_index}\n"
s += f"all_doc_tokens ({type(self.all_doc_tokens)}): {self.all_doc_tokens}\n"
s += f"tok_to_tags_index ({type(self.tok_to_tags_index)}): {self.tok_to_tags_index}\n"
s += f"xpath_tag_map ({type(self.xpath_tag_map)}): {self.xpath_tag_map}\n"
s += f"xpath_subs_map ({type(self.xpath_subs_map)}): {self.xpath_subs_map}\n"
s += f"tree_id_map ({type(self.tree_id_map)}): {self.tree_id_map}\n"
return s
class InputFeatures(object):
r"""
The Container for the Features of Input Doc Spans.
Arguments:
unique_id (int): the unique id of the input doc span.
example_index (int): the index of the corresponding SRC Example of the input doc span.
page_id (str): the id of the corresponding web page of the question.
doc_span_index (int): the index of the doc span among all the doc spans which corresponding to the same SRC
Example.
tokens (list[str]): the sub-tokens of the input sequence, including cls token, sep tokens, and the sub-tokens
of the question and HTML file.
token_to_orig_map (dict[int, int]): the mapping from the HTML file's sub-tokens in the sequence tokens (tokens)
to the origin tokens (all_tokens in the corresponding SRC Example).
token_is_max_context (dict[int, bool]): whether the current doc span contains the max pre- and post-context for
each HTML file's sub-tokens.
input_ids (list[int]): the ids of the sub-tokens in the input sequence (tokens).
input_mask (list[int]): use 0/1 to distinguish the input sequence from paddings.
segment_ids (list[int]): use 0/1 to distinguish the question and the HTML files.
paragraph_len (int): the length of the HTML file's sub-tokens.
start_position (int): the position where the answer starts in the input sequence (0 if the answer is not fully
in the input sequence).
end_position (int): the position where the answer ends in the input sequence; NOTE that the answer tokens
include the token at end_position (0 if the answer is not fully in the input sequence).
token_to_tag_index (list[int]): the mapping from sub-tokens of the input sequence to the id of the deepest tag
it belongs to.
is_impossible (bool): whether the answer is fully in the doc span.
"""
def __init__(self,
unique_id,
example_index,
page_id,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
segment_ids,
paragraph_len,
start_position=None,
end_position=None,
token_to_tag_index=None,
is_impossible=None,
xpath_tags_seq=None,
xpath_subs_seq=None,
xpath_box_seq=None,
extended_attention_mask=None):
self.unique_id = unique_id
self.example_index = example_index
self.page_id = page_id
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.paragraph_len = paragraph_len
self.start_position = start_position
self.end_position = end_position
self.token_to_tag_index = token_to_tag_index
self.is_impossible = is_impossible
self.xpath_tags_seq = xpath_tags_seq
self.xpath_subs_seq = xpath_subs_seq
self.xpath_box_seq = xpath_box_seq
self.extended_attention_mask = extended_attention_mask
def html_escape(html):
r"""
replace the special expressions in the html file for specific punctuation.
"""
html = html.replace('"', '"')
html = html.replace('&', '&')
html = html.replace('<', '<')
html = html.replace('>', '>')
html = html.replace(' ', ' ')
return html
def read_squad_examples(args, input_file, root_dir, is_training, tokenizer, simplify=False, max_depth=50,
split_flag="n-eon",
attention_width=None):
r"""
pre-process the data in json format into SRC Examples.
Arguments:
split_flag:
attention_width:
input_file (str): the inputting data file in json format.
root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files.
is_training (bool): True if processing the training set, else False.
tokenizer (Tokenizer): the tokenizer for PLM in use.
method (str): the name of the method in use, choice: ['T-PLM', 'H-PLM', 'V-PLM'].
simplify (bool): when setting to Ture, the returned Example will only contain document tokens, the id of the
question-answers, and the total tag number in the corresponding html files.
Returns:
list[SRCExamples]: the resulting SRC Examples, contained all the needed information for the feature generation
process, except when the argument simplify is setting to True;
set[str]: all the tag names appeared in the processed dataset, e.g. <div>, <img/>, </p>, etc..
"""
with open(input_file, "r", encoding='utf-8') as reader:
input_data = json.load(reader)["data"]
pad_tree_id_seq = [1001] * max_depth
def is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
def html_to_text_list(h):
tag_num, text_list = 0, []
for element in h.descendants:
if (type(element) == bs4.element.NavigableString) and (element.strip()):
text_list.append(element.strip())
if type(element) == bs4.element.Tag:
tag_num += 1
return text_list, tag_num + 2 # + 2 because we treat the additional 'yes' and 'no' as two special tags.
def html_to_text(h):
tag_list = set()
for element in h.descendants:
if type(element) == bs4.element.Tag:
element.attrs = {}
temp = str(element).split()
tag_list.add(temp[0])
tag_list.add(temp[-1])
return html_escape(str(h)), tag_list
def adjust_offset(offset, text):
text_list = text.split()
cnt, adjustment = 0, []
for t in text_list:
if not t:
continue
if t[0] == '<' and t[-1] == '>':
adjustment.append(offset.index(cnt))
else:
cnt += 1
add = 0
adjustment.append(len(offset))
for i in range(len(offset)):
while i >= adjustment[add]:
add += 1
offset[i] += add
return offset
def e_id_to_t_id(e_id, html):
t_id = 0
for element in html.descendants:
if type(element) == bs4.element.NavigableString and element.strip():
t_id += 1
if type(element) == bs4.element.Tag:
if int(element.attrs['tid']) == e_id:
break
return t_id
def calc_num_from_raw_text_list(t_id, l):
n_char = 0
for i in range(t_id):
n_char += len(l[i]) + 1
return n_char
def word_to_tag_from_text(tokens, h):
cnt, w_t, path = -1, [], []
unique_tids = set()
for t in tokens[0:-2]:
if len(t) < 2:
w_t.append(path[-1])
unique_tids.add(path[-1])
continue
if t[0] == '<' and t[-2] == '/':
cnt += 1
w_t.append(cnt)
unique_tids.add(cnt)
continue
if t[0] == '<' and t[1] != '/':
cnt += 1
path.append(cnt)
w_t.append(path[-1])
unique_tids.add(path[-1])
if t[0] == '<' and t[1] == '/':
del path[-1]
w_t.append(cnt + 1)
unique_tids.add(cnt + 1)
w_t.append(cnt + 2)
unique_tids.add(cnt + 2)
assert len(w_t) == len(tokens)
assert len(path) == 0, print(h)
return w_t, unique_tids
def word_tag_offset(html):
cnt, w_t, t_w, tags, tags_tids = 0, [], [], [], []
for element in html.descendants:
if type(element) == bs4.element.Tag:
content = ' '.join(list(element.strings)).split()
t_w.append({'start': cnt, 'len': len(content)})
tags.append('<' + element.name + '>')
tags_tids.append(element['tid'])
elif type(element) == bs4.element.NavigableString and element.strip():
text = element.split()
tid = element.parent['tid']
ind = tags_tids.index(tid)
for _ in text:
w_t.append(ind)
cnt += 1
assert cnt == len(w_t)
w_t.append(len(t_w))
w_t.append(len(t_w) + 1)
return w_t
def subtoken_tag_offset(html, s_tok):
w_t = word_tag_offset(html)
s_t = []
unique_tids = set()
for i in range(len(s_tok)):
s_t.append(w_t[s_tok[i]])
unique_tids.add(w_t[s_tok[i]])
return s_t, unique_tids
def subtoken_tag_offset_plus_eon(html, s_tok, all_doc_tokens):
w_t = word_tag_offset(html)
s_t = []
unique_tids = set()
offset = 0
for i in range(len(s_tok)):
if all_doc_tokens[i] not in ('<end-of-node>', tokenizer.sep_token, tokenizer.cls_token):
s_t.append(w_t[s_tok[i] - offset])
unique_tids.add(w_t[s_tok[i] - offset])
else:
prev_tid = s_t[-1]
s_t.append(prev_tid)
offset += 1
return s_t, unique_tids
def check_visible(path1, path2, attention_width):
i = 0
j = 0
dis = 0
lp1 = len(path1)
lp2 = len(path2)
while i < lp1 and j < lp2 and path1[i] == path2[j]:
i += 1
j += 1
if i < lp1 and j < lp2:
dis += lp1 - i + lp2 - j
else:
if i == lp1:
dis += lp2 - j
else:
dis += lp1 - i
if dis <= attention_width:
return True
return False
def from_tids_to_box(html_fn, unique_tids, json_fn):
sorted_ids = sorted(unique_tids)
f = open(json_fn, 'r')
data = json.load(f)
orig_width, orig_height = data['2']['rect']['width'], data['2']['rect']['height']
orig_x, orig_y = data['2']['rect']['x'], data['2']['rect']['y']
return_dict = {}
for id in sorted_ids:
if str(id) in data:
x, y, width, height = data[str(id)]['rect']['x'], data[str(id)]['rect']['y'], data[str(id)]['rect']['width'], data[str(id)]['rect']['height']
resize_x = (x - orig_x) * 1000 // orig_width
resize_y = (y - orig_y) * 1000 // orig_height
resize_width = width * 1000 // orig_width
resize_height = height * 1000 // orig_height
# if not (resize_x <= 1000 and resize_y <= 1000):
# print('before', x, y, width, height)
# print('after', resize_x, resize_y, resize_width, resize_height)
# print('file name ', html_fn)
# # exit(0)
if resize_x < 0 or resize_y < 0 or resize_width < 0 or resize_height < 0: # meaningless
return_dict[id] = [0, 0, 0, 0]
else:
return_dict[id] = [int(resize_x), int(resize_y), int(resize_x+resize_width), int(resize_y+resize_height)]
else:
return_dict[id] = [0,0,0,0]
return return_dict
def get_visible_matrix(unique_tids, tree_id_map, attention_width):
if attention_width is None:
return None
unique_tids_list = list(unique_tids)
visible_matrix = collections.defaultdict(list)
for i in range(len(unique_tids_list)):
if tree_id_map[unique_tids_list[i]] == pad_tree_id_seq:
visible_matrix[unique_tids_list[i]] = list()
continue
visible_matrix[unique_tids_list[i]].append(unique_tids_list[i])
for j in range(i + 1, len(unique_tids_list)):
if check_visible(tree_id_map[unique_tids_list[i]], tree_id_map[unique_tids_list[j]], attention_width):
visible_matrix[unique_tids_list[i]].append(unique_tids_list[j])
visible_matrix[unique_tids_list[j]].append(unique_tids_list[i])
return visible_matrix
examples = []
all_tag_list = set()
total_num = sum([len(entry["websites"]) for entry in input_data])
with tqdm(total=total_num, desc="Converting websites to examples") as t:
for entry in input_data:
# print('entry', entry)
domain = entry["domain"]
for website in entry["websites"]:
# print('website', website)
# Generate Doc Tokens
page_id = website["page_id"]
# print('page_id', page_id)
curr_dir = osp.join(root_dir, domain, page_id[0:2], 'processed_data')
html_fn = osp.join(curr_dir, page_id + '.html')
json_fn = osp.join(curr_dir, page_id + '.json')
# print('html', html_fn)
html_file = open(html_fn).read()
html_code = bs(html_file, "html.parser")
raw_text_list, tag_num = html_to_text_list(html_code)
# print(raw_text_list)
# print(tag_num)
# exit(0)
doc_tokens = []
char_to_word_offset = []
# print(split_flag) # n-eon
# exit(0)
if split_flag in ["y-eon", "y-sep", "y-cls"]:
prev_is_whitespace = True
for i, doc_string in enumerate(raw_text_list):
for c in doc_string:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
if i < len(raw_text_list) - 1:
prev_is_whitespace = True
char_to_word_offset.append(len(doc_tokens) - 1)
if split_flag == "y-eon":
doc_tokens.append('<end-of-node>')
elif split_flag == "y-sep":
doc_tokens.append(tokenizer.sep_token)
elif split_flag == "y-cls":
doc_tokens.append(tokenizer.cls_token)
else:
raise ValueError("Split flag should be `y-eon` or `y-sep` or `y-cls`")
prev_is_whitespace = True
elif split_flag =="n-eon" or split_flag == "y-hplm":
page_text = ' '.join(raw_text_list)
prev_is_whitespace = True
for c in page_text:
if is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
doc_tokens.append('no')
char_to_word_offset.append(len(doc_tokens) - 1)
doc_tokens.append('yes')
char_to_word_offset.append(len(doc_tokens) - 1)
if split_flag == "y-hplm":
real_text, tag_list = html_to_text(bs(html_file))
all_tag_list = all_tag_list | tag_list
char_to_word_offset = adjust_offset(char_to_word_offset, real_text)
doc_tokens = real_text.split()
doc_tokens.append('no')
doc_tokens.append('yes')
doc_tokens = [i for i in doc_tokens if i]
else:
tag_list = []
assert len(doc_tokens) == char_to_word_offset[-1] + 1, (len(doc_tokens), char_to_word_offset[-1])
if simplify:
for qa in website["qas"]:
qas_id = qa["id"]
example = SRCExample(doc_tokens=doc_tokens, qas_id=qas_id, tag_num=tag_num)
examples.append(example)
t.update(1)
else:
# Tokenize all doc tokens
# tokenize sth like < / >
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
if token in tag_list:
sub_tokens = [token]
else:
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
# Generate extra information for features
if split_flag in ["y-eon", "y-sep", "y-cls"]:
tok_to_tags_index, unique_tids = subtoken_tag_offset_plus_eon(html_code, tok_to_orig_index,
all_doc_tokens)
elif split_flag == "n-eon":
tok_to_tags_index, unique_tids = subtoken_tag_offset(html_code, tok_to_orig_index)
elif split_flag == "y-hplm":
tok_to_tags_index, unique_tids = word_to_tag_from_text(all_doc_tokens, html_code)
else:
raise ValueError("Unsupported split_flag!")
xpath_tag_map, xpath_subs_map, tree_id_map = get_xpath_and_treeid4tokens(html_code, unique_tids,
max_depth=max_depth)
# tree_id_map : neither truncated nor padded
xpath_box = from_tids_to_box(html_fn, unique_tids, json_fn)
assert tok_to_tags_index[-1] == tag_num - 1, (tok_to_tags_index[-1], tag_num - 1)
# we get attention_mask here
visible_matrix = get_visible_matrix(unique_tids, tree_id_map, attention_width=attention_width)
# Process each qas, which is mainly calculate the answer position
for qa in website["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
end_position = None
orig_answer_text = None
if is_training:
if len(qa["answers"]) != 1:
raise ValueError(
"For training, each question should have exactly 1 answer.")
answer = qa["answers"][0]
orig_answer_text = answer["text"]
if answer["element_id"] == -1:
num_char = len(char_to_word_offset) - 2
else:
num_char = calc_num_from_raw_text_list(e_id_to_t_id(answer["element_id"], html_code),
raw_text_list)
answer_offset = num_char + answer["answer_start"]
answer_length = len(orig_answer_text) if answer["element_id"] != -1 else 1
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = " ".join([w for w in doc_tokens[start_position:(end_position + 1)]
if (w[0] != '<' or w[-1] != '>')
and w != "<end-of-node>"
and w != tokenizer.sep_token
and w != tokenizer.cls_token])
cleaned_answer_text = " ".join(whitespace_tokenize(orig_answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logging.warning("Could not find answer of question %s: '%s' vs. '%s'",
qa['id'], actual_text, cleaned_answer_text)
continue
example = SRCExample(
doc_tokens=doc_tokens,
qas_id=qas_id,
tag_num=tag_num,
question_text=question_text,
html_code=html_code,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
tok_to_orig_index=tok_to_orig_index,
orig_to_tok_index=orig_to_tok_index,
all_doc_tokens=all_doc_tokens,
tok_to_tags_index=tok_to_tags_index,
xpath_tag_map=xpath_tag_map,
xpath_subs_map=xpath_subs_map,
xpath_box=xpath_box,
tree_id_map=tree_id_map,
visible_matrix=visible_matrix
)
examples.append(example)
if args.web_num_features != 0:
if len(examples) >= args.web_num_features:
return examples, all_tag_list
t.update(1)
return examples, all_tag_list
def load_and_cache_examples(args, tokenizer, max_depth=50, evaluate=False, output_examples=False):
r"""
Load and process the raw data.
"""
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset,
# and the others will use the cache
# Load data features from cache or dataset file
input_file = args.web_eval_file if evaluate else args.web_train_file
cached_features_file = os.path.join(args.cache_dir, 'cached_{}_{}_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train',
"markuplm",
str(args.max_seq_length),
str(max_depth),
args.web_num_features,
args.model_type
))
if not os.path.exists(os.path.dirname(cached_features_file)):
os.makedirs(os.path.dirname(cached_features_file))
if os.path.exists(cached_features_file) and not args.overwrite_cache:
print("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
if output_examples:
examples, tag_list = read_squad_examples(args, input_file=input_file,
root_dir=args.web_root_dir,
is_training=not evaluate,
tokenizer=tokenizer,
simplify=True,
max_depth=max_depth
)
else:
examples = None
else:
print("Creating features from dataset file at %s", input_file)
examples, _ = read_squad_examples(args, input_file=input_file,
root_dir=args.web_root_dir,
is_training=not evaluate,
tokenizer=tokenizer,
simplify=False,
max_depth=max_depth)
features = convert_examples_to_features(examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
pad_token=tokenizer.pad_token_id,
sequence_a_segment_id=0,
sequence_b_segment_id=0,
max_depth=max_depth)
if args.local_rank in [-1, 0] and args.web_save_features:
print("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset,
# and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_xpath_tags_seq = torch.tensor([f.xpath_tags_seq for f in features], dtype=torch.long)
all_xpath_subs_seq = torch.tensor([f.xpath_subs_seq for f in features], dtype=torch.long)
all_xpath_box_seq = torch.tensor([f.xpath_box_seq for f in features], dtype=torch.long)
if evaluate:
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids, all_feature_index,
all_xpath_tags_seq, all_xpath_subs_seq, all_xpath_box_seq)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids,
all_xpath_tags_seq, all_xpath_subs_seq,
all_start_positions, all_end_positions, all_xpath_box_seq)
if output_examples:
dataset = (dataset, examples, features)
return dataset
def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training,
cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
sequence_a_segment_id=0, sequence_b_segment_id=1,
cls_token_segment_id=0, pad_token_segment_id=0,
mask_padding_with_zero=True, max_depth=50):
r"""
Converting the SRC Examples further into the features for all the input doc spans.
Arguments:
examples (list[SRCExample]): the list of SRC Examples to process.
tokenizer (Tokenizer): the tokenizer for PLM in use.
max_seq_length (int): the max length of the total sub-token sequence, including the question, cls token, sep
tokens, and documents; if the length of the input is bigger than max_seq_length, the input
will be cut into several doc spans.
doc_stride (int): the stride length when the input is cut into several doc spans.
max_query_length (int): the max length of the sub-token sequence of the questions; the question will be truncate
if it is longer than max_query_length.
is_training (bool): True if processing the training set, else False.
cls_token (str): the cls token in use, default is '[CLS]'.
sep_token (str): the sep token in use, default is '[SEP]'.
pad_token (int): the id of the padding token in use when the total sub-token length is smaller that
max_seq_length, default is 0 which corresponding to the '[PAD]' token.
sequence_a_segment_id: the segment id for the first sequence (the question), default is 0.
sequence_b_segment_id: the segment id for the second sequence (the html file), default is 1.
cls_token_segment_id: the segment id for the cls token, default is 0.
pad_token_segment_id: the segment id for the padding tokens, default is 0.
mask_padding_with_zero: determine the pattern of the returned input mask; 0 for padding tokens and 1 for others
when True, and vice versa.
Returns:
list[InputFeatures]: the resulting input features for all the input doc spans
"""
pad_x_tag_seq = [216] * max_depth
pad_x_subs_seq = [1001] * max_depth
pad_x_box = [0,0,0,0]
pad_tree_id_seq = [1001] * max_depth
unique_id = 1000000000
features = []
for (example_index, example) in enumerate(tqdm(examples, desc="Converting examples to features")):
xpath_tag_map = example.xpath_tag_map
xpath_subs_map = example.xpath_subs_map
xpath_box = example.xpath_box
tree_id_map = example.tree_id_map
visible_matrix = example.visible_matrix
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_start_position = None
tok_end_position = None
if is_training:
tok_start_position = example.orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = example.orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(example.all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(
example.all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
example.orig_answer_text)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(example.all_doc_tokens):
length = len(example.all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(_DocSpan(start=start_offset, length=length))
if start_offset + length == len(example.all_doc_tokens):
break
start_offset += min(length, doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
token_to_tag_index = []
# CLS token at the beginning
tokens.append(cls_token)
segment_ids.append(cls_token_segment_id)
token_to_tag_index.append(example.tag_num)
# Query
tokens += query_tokens
segment_ids += [sequence_a_segment_id] * len(query_tokens)
token_to_tag_index += [example.tag_num] * len(query_tokens)
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_a_segment_id)
token_to_tag_index.append(example.tag_num)
# Paragraph
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = example.tok_to_orig_index[split_token_index]
token_to_tag_index.append(example.tok_to_tags_index[split_token_index])
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(example.all_doc_tokens[split_token_index])
segment_ids.append(sequence_b_segment_id)
paragraph_len = doc_span.length
# SEP token
tokens.append(sep_token)
segment_ids.append(sequence_b_segment_id)
token_to_tag_index.append(example.tag_num)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(pad_token)
input_mask.append(0 if mask_padding_with_zero else 1)
segment_ids.append(pad_token_segment_id)
token_to_tag_index.append(example.tag_num)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(token_to_tag_index) == max_seq_length
span_is_impossible = False
start_position = None
end_position = None
if is_training:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
span_is_impossible = True
start_position = 0
end_position = 0
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
'''
if 10 < example_index < 20:
print("*** Example ***")
#print("page_id: %s" % (example.qas_id[:-5]))
#print("token_to_tag_index :%s" % token_to_tag_index)
#print(len(token_to_tag_index))
#print("unique_id: %s" % (unique_id))
#print("example_index: %s" % (example_index))
#print("doc_span_index: %s" % (doc_span_index))
# print("tokens: %s" % " ".join(tokens))
print("tokens: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in enumerate(tokens)
]))
#print("token_to_orig_map: %s" % " ".join([
# "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
#print(len(token_to_orig_map))
# print("token_is_max_context: %s" % " ".join([
# "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
# ]))
#print(len(token_is_max_context))
#print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
#print(len(input_ids))
#print(
# "input_mask: %s" % " ".join([str(x) for x in input_mask]))
#print(len(input_mask))
#print(
# "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
#print(len(segment_ids))
print(f"original answer: {example.orig_answer_text}")
if is_training and span_is_impossible:
print("impossible example")
if is_training and not span_is_impossible:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
print("start_position: %d" % (start_position))
print("end_position: %d" % (end_position))
print(
"answer: %s" % (answer_text))
'''
# print('token_to_tag_index', token_to_tag_index)
# print('xpath_tag_map', xpath_tag_map)
# exit(0)
xpath_tags_seq = [xpath_tag_map.get(tid, pad_x_tag_seq) for tid in token_to_tag_index] # ok
xpath_subs_seq = [xpath_subs_map.get(tid, pad_x_subs_seq) for tid in token_to_tag_index] # ok
xpath_box_seq = [xpath_box.get(tid, pad_x_box) for tid in token_to_tag_index]
# print(xpath_box_seq)
# exit(0)
# we need to get extended_attention_mask
if visible_matrix is not None:
extended_attention_mask = []
for tid in token_to_tag_index:
if tid == example.tag_num:
extended_attention_mask.append(input_mask)
else:
visible_tids = visible_matrix[tid]
if len(visible_tids) == 0:
extended_attention_mask.append(input_mask)
continue
visible_per_token = []
for i, tid in enumerate(token_to_tag_index):
if tid == example.tag_num and input_mask[i] == (1 if mask_padding_with_zero else 0):
visible_per_token.append(1 if mask_padding_with_zero else 0)
elif tid in visible_tids:
visible_per_token.append(1 if mask_padding_with_zero else 0)
else:
visible_per_token.append(0 if mask_padding_with_zero else 1)
extended_attention_mask.append(visible_per_token) # should be (max_seq_len*max_seq_len)
else:
extended_attention_mask = None
features.append(
InputFeatures(
unique_id=unique_id,
example_index=example_index,
page_id=example.qas_id[:-5],
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
paragraph_len=paragraph_len,
start_position=start_position,
end_position=end_position,
token_to_tag_index=token_to_tag_index,
is_impossible=span_is_impossible,
xpath_tags_seq=xpath_tags_seq,
xpath_subs_seq=xpath_subs_seq,
xpath_box_seq=xpath_box_seq,
extended_attention_mask=extended_attention_mask,
))
unique_id += 1
return features
def get_websrc_dataset(args, tokenizer, evaluate=False, output_examples=False):
if not evaluate:
websrc_dataset = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=False)
return websrc_dataset
else:
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=True)
return dataset, examples, features
|