File size: 59,741 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
import os
import torch
import collections
import logging
from tqdm import tqdm, trange
import json
import bs4
from os import path as osp
from bs4 import BeautifulSoup as bs
# from transformers.models.bert.tokenization_bert import BasicTokenizer, whitespace_tokenize
from torch.utils.data import Dataset
import networkx as nx
from lxml import etree
import pickle
# from transformers.tokenization_bert import BertTokenizer
from transformers import BertTokenizer
import argparse

tags_dict = {'a': 0, 'abbr': 1, 'acronym': 2, 'address': 3, 'altGlyph': 4, 'altGlyphDef': 5, 'altGlyphItem': 6,
             'animate': 7, 'animateColor': 8, 'animateMotion': 9, 'animateTransform': 10, 'applet': 11, 'area': 12,
             'article': 13, 'aside': 14, 'audio': 15, 'b': 16, 'base': 17, 'basefont': 18, 'bdi': 19, 'bdo': 20,
             'bgsound': 21, 'big': 22, 'blink': 23, 'blockquote': 24, 'body': 25, 'br': 26, 'button': 27, 'canvas': 28,
             'caption': 29, 'center': 30, 'circle': 31, 'cite': 32, 'clipPath': 33, 'code': 34, 'col': 35,
             'colgroup': 36, 'color-profile': 37, 'content': 38, 'cursor': 39, 'data': 40, 'datalist': 41, 'dd': 42,
             'defs': 43, 'del': 44, 'desc': 45, 'details': 46, 'dfn': 47, 'dialog': 48, 'dir': 49, 'div': 50, 'dl': 51,
             'dt': 52, 'ellipse': 53, 'em': 54, 'embed': 55, 'feBlend': 56, 'feColorMatrix': 57,
             'feComponentTransfer': 58, 'feComposite': 59, 'feConvolveMatrix': 60, 'feDiffuseLighting': 61,
             'feDisplacementMap': 62, 'feDistantLight': 63, 'feFlood': 64, 'feFuncA': 65, 'feFuncB': 66, 'feFuncG': 67,
             'feFuncR': 68, 'feGaussianBlur': 69, 'feImage': 70, 'feMerge': 71, 'feMergeNode': 72, 'feMorphology': 73,
             'feOffset': 74, 'fePointLight': 75, 'feSpecularLighting': 76, 'feSpotLight': 77, 'feTile': 78,
             'feTurbulence': 79, 'fieldset': 80, 'figcaption': 81, 'figure': 82, 'filter': 83, 'font-face-format': 84,
             'font-face-name': 85, 'font-face-src': 86, 'font-face-uri': 87, 'font-face': 88, 'font': 89, 'footer': 90,
             'foreignObject': 91, 'form': 92, 'frame': 93, 'frameset': 94, 'g': 95, 'glyph': 96, 'glyphRef': 97,
             'h1': 98, 'h2': 99, 'h3': 100, 'h4': 101, 'h5': 102, 'h6': 103, 'head': 104, 'header': 105, 'hgroup': 106,
             'hkern': 107, 'hr': 108, 'html': 109, 'i': 110, 'iframe': 111, 'image': 112, 'img': 113, 'input': 114,
             'ins': 115, 'kbd': 116, 'keygen': 117, 'label': 118, 'legend': 119, 'li': 120, 'line': 121,
             'linearGradient': 122, 'link': 123, 'main': 124, 'map': 125, 'mark': 126, 'marker': 127, 'marquee': 128,
             'mask': 129, 'math': 130, 'menu': 131, 'menuitem': 132, 'meta': 133, 'metadata': 134, 'meter': 135,
             'missing-glyph': 136, 'mpath': 137, 'nav': 138, 'nobr': 139, 'noembed': 140, 'noframes': 141,
             'noscript': 142, 'object': 143, 'ol': 144, 'optgroup': 145, 'option': 146, 'output': 147, 'p': 148,
             'param': 149, 'path': 150, 'pattern': 151, 'picture': 152, 'plaintext': 153, 'polygon': 154,
             'polyline': 155, 'portal': 156, 'pre': 157, 'progress': 158, 'q': 159, 'radialGradient': 160, 'rb': 161,
             'rect': 162, 'rp': 163, 'rt': 164, 'rtc': 165, 'ruby': 166, 's': 167, 'samp': 168, 'script': 169,
             'section': 170, 'select': 171, 'set': 172, 'shadow': 173, 'slot': 174, 'small': 175, 'source': 176,
             'spacer': 177, 'span': 178, 'stop': 179, 'strike': 180, 'strong': 181, 'style': 182, 'sub': 183,
             'summary': 184, 'sup': 185, 'svg': 186, 'switch': 187, 'symbol': 188, 'table': 189, 'tbody': 190,
             'td': 191, 'template': 192, 'text': 193, 'textPath': 194, 'textarea': 195, 'tfoot': 196, 'th': 197,
             'thead': 198, 'time': 199, 'title': 200, 'tr': 201, 'track': 202, 'tref': 203, 'tspan': 204, 'tt': 205,
             'u': 206, 'ul': 207, 'use': 208, 'var': 209, 'video': 210, 'view': 211, 'vkern': 212, 'wbr': 213,
             'xmp': 214}


def whitespace_tokenize(text):
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


# ---------- copied ! --------------
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join([w for w in doc_tokens[new_start:(new_end + 1)]
                                  if w[0] != '<' or w[-1] != '>'])
            if text_span == tok_answer_text:
                return new_start, new_end

    return input_start, input_end

class StrucDataset(Dataset):
    """Dataset wrapping tensors.

    Each sample will be retrieved by indexing tensors along the first dimension.

    Arguments:
        *tensors (*torch.Tensor): tensors that have the same size of the first dimension.
        page_ids (list): the corresponding page ids of the input features.
        cnn_feature_dir (str): the direction where the cnn features are stored.
        token_to_tag (torch.Tensor): the mapping from each token to its corresponding tag id.
    """

    def __init__(self, *tensors, pad_id=0,
                 all_expended_attention_mask=None,
                 all_graph_names=None,
                 all_token_to_tag=None,
                 page_ids=None,
                 attention_width=None,
                 has_tree_attention_bias = False):
        tensors = tuple(tensor for tensor in tensors)
        assert all(len(tensors[0]) == len(tensor) for tensor in tensors)
        if all_expended_attention_mask is not None:
            assert len(tensors[0]) == len(all_expended_attention_mask)
            tensors += (all_expended_attention_mask,)
        self.tensors = tensors
        self.page_ids = page_ids
        self.all_graph_names = all_graph_names
        self.all_token_to_tag = all_token_to_tag
        self.pad_id = pad_id
        self.attention_width = attention_width
        self.has_tree_attention_bias = has_tree_attention_bias

    def __getitem__(self, index):
        output = [tensor[index] for tensor in self.tensors]

        input_id = output[0]
        attention_mask = output[1]


        if not self.attention_width is None or self.has_tree_attention_bias:
            assert self.all_graph_names is not None , ("For non-empty attention_width / tree rel pos,"
                                                       "Graph names must be sent in!")

        if self.all_graph_names is not None:
            assert self.all_token_to_tag is not None
            graph_name = self.all_graph_names[index]
            token_to_tag = self.all_token_to_tag[index]
            with open(graph_name,"rb") as f:
                node_pairs_lengths = pickle.load(f)

            # node_pairs_lengths = dict(nx.all_pairs_shortest_path_length(graph))

            seq_len = len(token_to_tag)
            if self.has_tree_attention_bias:
                mat = [[0]*seq_len]*seq_len
            else:
                mat = None

            if self.attention_width is not None:
                emask = attention_mask.expand(seq_len,seq_len)
            else:
                emask = None

            for nid in range(seq_len):
                if input_id[nid]==self.pad_id:
                    break
                for anid in range(nid+1,seq_len):
                    if input_id[anid]==self.pad_id:
                        break

                    x_tid4nid = token_to_tag[nid]
                    x_tid4anid = token_to_tag[anid]

                    if x_tid4nid==x_tid4anid:
                        continue

                    try:
                        xx = node_pairs_lengths[x_tid4nid]
                        # x_tid4nid in valid tid list, or == -1
                    except:
                        # x_tid4nid out of bound, like `question`, `sep` or `cls`
                        xx = node_pairs_lengths[-1]
                        x_tid4nid=-1

                    try:
                        dis = xx[x_tid4anid]
                        # x_tid4anid in valid tid list, or == -1
                    except:
                        # x_tid4nid out of bound, like `question`, `sep` or `cls`
                        dis = xx[-1]
                        x_tid4anid = -1

                    # xx = node_pairs_lengths.get(tid4nid,node_pairs_lengths[-1])
                    # dis = xx.get(tid4anid,xx[-1])

                    if self.has_tree_attention_bias:
                        if x_tid4nid<x_tid4anid:
                            mat[nid][anid]=dis
                            mat[anid][nid]=-dis
                        else:
                            mat[nid][anid] = -dis
                            mat[anid][nid] = dis

                    if self.attention_width is not None:
                        # [nid][anid] determines whether nid can see anid
                        if x_tid4nid==-1 or x_tid4anid==-1: # sep / cls / question / pad
                            continue

                        if dis>self.attention_width:
                            emask[nid][anid]=0
                            emask[anid][nid]=0


            if self.attention_width is not None:
                output.append(emask)

            if self.has_tree_attention_bias:
                t_mat = torch.tensor(mat,dtype=torch.long)
                output.append(t_mat)


        return tuple(item for item in output)

    def __len__(self):
        return len(self.tensors[0])


def get_xpath4tokens(html_fn: str, unique_tids: set):
    xpath_map = {}
    tree = etree.parse(html_fn, etree.HTMLParser())
    nodes = tree.xpath('//*')
    for node in nodes:
        tid = node.attrib.get("tid")
        if int(tid) in unique_tids:
            xpath_map[int(tid)] = tree.getpath(node)
    xpath_map[len(nodes)] = "/html"
    xpath_map[len(nodes) + 1] = "/html"
    return xpath_map


def get_xpath_and_treeid4tokens(html_code, unique_tids, max_depth):
    unknown_tag_id = len(tags_dict)
    pad_tag_id = unknown_tag_id + 1
    max_width = 1000
    width_pad_id = 1001

    pad_x_tag_seq = [pad_tag_id] * max_depth
    pad_x_subs_seq = [width_pad_id] * max_depth
    pad_x_box = [0,0,0,0]
    pad_tree_id_seq = [width_pad_id] * max_depth

    def xpath_soup(element):

        xpath_tags = []
        xpath_subscripts = []
        tree_index = []
        child = element if element.name else element.parent
        for parent in child.parents:  # type: bs4.element.Tag
            siblings = parent.find_all(child.name, recursive=False)
            para_siblings = parent.find_all(True, recursive=False)
            xpath_tags.append(child.name)
            xpath_subscripts.append(
                0 if 1 == len(siblings) else next(i for i, s in enumerate(siblings, 1) if s is child))

            tree_index.append(next(i for i, s in enumerate(para_siblings, 0) if s is child))
            child = parent
        xpath_tags.reverse()
        xpath_subscripts.reverse()
        tree_index.reverse()
        return xpath_tags, xpath_subscripts, tree_index

    xpath_tag_map = {}
    xpath_subs_map = {}
    tree_id_map = {}

    for tid in unique_tids:
        element = html_code.find(attrs={'tid': tid})
        if element is None:
            xpath_tags = pad_x_tag_seq
            xpath_subscripts = pad_x_subs_seq
            tree_index = pad_tree_id_seq

            xpath_tag_map[tid] = xpath_tags
            xpath_subs_map[tid] = xpath_subscripts
            tree_id_map[tid] = tree_index
            continue

        xpath_tags, xpath_subscripts, tree_index = xpath_soup(element)

        assert len(xpath_tags) == len(xpath_subscripts)
        assert len(xpath_tags) == len(tree_index)

        if len(xpath_tags) > max_depth:
            xpath_tags = xpath_tags[-max_depth:]
            xpath_subscripts = xpath_subscripts[-max_depth:]
            # tree_index = tree_index[-max_depth:]

        xpath_tags = [tags_dict.get(name, unknown_tag_id) for name in xpath_tags]
        xpath_subscripts = [min(i, max_width) for i in xpath_subscripts]
        tree_index = [min(i, max_width) for i in tree_index]

        # we do not append them to max depth here

        xpath_tags += [pad_tag_id] * (max_depth - len(xpath_tags))
        xpath_subscripts += [width_pad_id] * (max_depth - len(xpath_subscripts))
        # tree_index += [width_pad_id] * (max_depth - len(tree_index))

        xpath_tag_map[tid] = xpath_tags
        xpath_subs_map[tid] = xpath_subscripts
        tree_id_map[tid] = tree_index

    return xpath_tag_map, xpath_subs_map, tree_id_map


# ---------- copied ! --------------
def _check_is_max_context(doc_spans, cur_span_index, position):
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index


class SRCExample(object):
    r"""
    The Containers for SRC Examples.

    Arguments:
        doc_tokens (list[str]): the original tokens of the HTML file before dividing into sub-tokens.
        qas_id (str): the id of the corresponding question.
        tag_num (int): the total tag number in the corresponding HTML file, including the additional 'yes' and 'no'.
        question_text (str): the text of the corresponding question.
        orig_answer_text (str): the answer text provided by the dataset.
        all_doc_tokens (list[str]): the sub-tokens of the corresponding HTML file.
        start_position (int): the position where the answer starts in the all_doc_tokens.
        end_position (int): the position where the answer ends in the all_doc_tokens; NOTE that the answer tokens
                            include the token at end_position.
        tok_to_orig_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to origin tokens (doc_tokens).
        orig_to_tok_index (list[int]): the mapping from origin tokens (doc_tokens) to sub-tokens (all_doc_tokens).
        tok_to_tags_index (list[int]): the mapping from sub-tokens (all_doc_tokens) to the id of the deepest tag it
                                       belongs to.
    """

    # the difference between T-PLM and H-PLM is just add <xx> and </xx> into the
    # original tokens and further-tokenized tokens
    def __init__(self,
                 doc_tokens,
                 qas_id,
                 tag_num,  # <xx> ?? </xx> is counted as one tag
                 question_text=None,
                 html_code=None,
                 orig_answer_text=None,
                 start_position=None,  # in all_doc_tokens
                 end_position=None,  # in all_doc_tokens
                 tok_to_orig_index=None,
                 orig_to_tok_index=None,
                 all_doc_tokens=None,
                 tok_to_tags_index=None,
                 xpath_tag_map=None,
                 xpath_subs_map=None,
                 xpath_box=None,
                 tree_id_map=None,
                 visible_matrix=None,
                 ):
        self.doc_tokens = doc_tokens
        self.qas_id = qas_id
        self.tag_num = tag_num
        self.question_text = question_text
        self.html_code = html_code
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
        self.tok_to_orig_index = tok_to_orig_index
        self.orig_to_tok_index = orig_to_tok_index
        self.all_doc_tokens = all_doc_tokens
        self.tok_to_tags_index = tok_to_tags_index
        self.xpath_tag_map = xpath_tag_map
        self.xpath_subs_map = xpath_subs_map
        self.xpath_box = xpath_box
        self.tree_id_map = tree_id_map
        self.visible_matrix = visible_matrix

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        """
        s = ""
        s += "qas_id: %s" % self.qas_id
        s += ", question_text: %s" % (
            self.question_text)
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % self.start_position
        if self.end_position:
            s += ", end_position: %d" % self.end_position
        """
        s = "[INFO]\n"
        s += f"qas_id ({type(self.qas_id)}): {self.qas_id}\n"
        s += f"tag_num ({type(self.tag_num)}): {self.tag_num}\n"
        s += f"question_text ({type(self.question_text)}): {self.question_text}\n"
        s += f"html_code ({type(self.html_code)}): {self.html_code}\n"
        s += f"orig_answer_text ({type(self.orig_answer_text)}): {self.orig_answer_text}\n"
        s += f"start_position ({type(self.start_position)}): {self.start_position}\n"
        s += f"end_position ({type(self.end_position)}): {self.end_position}\n"
        s += f"tok_to_orig_index ({type(self.tok_to_orig_index)}): {self.tok_to_orig_index}\n"
        s += f"orig_to_tok_index ({type(self.orig_to_tok_index)}): {self.orig_to_tok_index}\n"
        s += f"all_doc_tokens ({type(self.all_doc_tokens)}): {self.all_doc_tokens}\n"
        s += f"tok_to_tags_index ({type(self.tok_to_tags_index)}): {self.tok_to_tags_index}\n"
        s += f"xpath_tag_map ({type(self.xpath_tag_map)}): {self.xpath_tag_map}\n"
        s += f"xpath_subs_map ({type(self.xpath_subs_map)}): {self.xpath_subs_map}\n"
        s += f"tree_id_map ({type(self.tree_id_map)}): {self.tree_id_map}\n"

        return s




class InputFeatures(object):
    r"""
    The Container for the Features of Input Doc Spans.

    Arguments:
        unique_id (int): the unique id of the input doc span.
        example_index (int): the index of the corresponding SRC Example of the input doc span.
        page_id (str): the id of the corresponding web page of the question.
        doc_span_index (int): the index of the doc span among all the doc spans which corresponding to the same SRC
                              Example.
        tokens (list[str]): the sub-tokens of the input sequence, including cls token, sep tokens, and the sub-tokens
                            of the question and HTML file.
        token_to_orig_map (dict[int, int]): the mapping from the HTML file's sub-tokens in the sequence tokens (tokens)
                                            to the origin tokens (all_tokens in the corresponding SRC Example).
        token_is_max_context (dict[int, bool]): whether the current doc span contains the max pre- and post-context for
                                                each HTML file's sub-tokens.
        input_ids (list[int]): the ids of the sub-tokens in the input sequence (tokens).
        input_mask (list[int]): use 0/1 to distinguish the input sequence from paddings.
        segment_ids (list[int]): use 0/1 to distinguish the question and the HTML files.
        paragraph_len (int): the length of the HTML file's sub-tokens.
        start_position (int): the position where the answer starts in the input sequence (0 if the answer is not fully
                              in the input sequence).
        end_position (int): the position where the answer ends in the input sequence; NOTE that the answer tokens
                            include the token at end_position (0 if the answer is not fully in the input sequence).
        token_to_tag_index (list[int]): the mapping from sub-tokens of the input sequence to the id of the deepest tag
                                        it belongs to.
        is_impossible (bool): whether the answer is fully in the doc span.
    """

    def __init__(self,
                 unique_id,
                 example_index,
                 page_id,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 paragraph_len,
                 start_position=None,
                 end_position=None,
                 token_to_tag_index=None,
                 is_impossible=None,
                 xpath_tags_seq=None,
                 xpath_subs_seq=None,
                 xpath_box_seq=None,
                 extended_attention_mask=None):
        self.unique_id = unique_id
        self.example_index = example_index
        self.page_id = page_id
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.paragraph_len = paragraph_len
        self.start_position = start_position
        self.end_position = end_position
        self.token_to_tag_index = token_to_tag_index
        self.is_impossible = is_impossible
        self.xpath_tags_seq = xpath_tags_seq
        self.xpath_subs_seq = xpath_subs_seq
        self.xpath_box_seq = xpath_box_seq
        self.extended_attention_mask = extended_attention_mask


def html_escape(html):
    r"""
    replace the special expressions in the html file for specific punctuation.
    """
    html = html.replace('&quot;', '"')
    html = html.replace('&amp;', '&')
    html = html.replace('&lt;', '<')
    html = html.replace('&gt;', '>')
    html = html.replace('&nbsp;', ' ')
    return html

def read_squad_examples(args, input_file, root_dir, is_training, tokenizer, simplify=False, max_depth=50,
                        split_flag="n-eon",
                        attention_width=None):
    r"""
    pre-process the data in json format into SRC Examples.

    Arguments:
        split_flag:
        attention_width:
        input_file (str): the inputting data file in json format.
        root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files.
        is_training (bool): True if processing the training set, else False.
        tokenizer (Tokenizer): the tokenizer for PLM in use.
        method (str): the name of the method in use, choice: ['T-PLM', 'H-PLM', 'V-PLM'].
        simplify (bool): when setting to Ture, the returned Example will only contain document tokens, the id of the
                         question-answers, and the total tag number in the corresponding html files.
    Returns:
        list[SRCExamples]: the resulting SRC Examples, contained all the needed information for the feature generation
                           process, except when the argument simplify is setting to True;
        set[str]: all the tag names appeared in the processed dataset, e.g. <div>, <img/>, </p>, etc..
    """
    with open(input_file, "r", encoding='utf-8') as reader:
        input_data = json.load(reader)["data"]

    pad_tree_id_seq = [1001] * max_depth

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    def html_to_text_list(h):
        tag_num, text_list = 0, []
        for element in h.descendants:
            if (type(element) == bs4.element.NavigableString) and (element.strip()):
                text_list.append(element.strip())
            if type(element) == bs4.element.Tag:
                tag_num += 1
        return text_list, tag_num + 2  # + 2 because we treat the additional 'yes' and 'no' as two special tags.

    def html_to_text(h):
        tag_list = set()
        for element in h.descendants:
            if type(element) == bs4.element.Tag:
                element.attrs = {}
                temp = str(element).split()
                tag_list.add(temp[0])
                tag_list.add(temp[-1])
        return html_escape(str(h)), tag_list

    def adjust_offset(offset, text):
        text_list = text.split()
        cnt, adjustment = 0, []
        for t in text_list:
            if not t:
                continue
            if t[0] == '<' and t[-1] == '>':
                adjustment.append(offset.index(cnt))
            else:
                cnt += 1
        add = 0
        adjustment.append(len(offset))
        for i in range(len(offset)):
            while i >= adjustment[add]:
                add += 1
            offset[i] += add
        return offset

    def e_id_to_t_id(e_id, html):
        t_id = 0
        for element in html.descendants:
            if type(element) == bs4.element.NavigableString and element.strip():
                t_id += 1
            if type(element) == bs4.element.Tag:
                if int(element.attrs['tid']) == e_id:
                    break
        return t_id

    def calc_num_from_raw_text_list(t_id, l):
        n_char = 0
        for i in range(t_id):
            n_char += len(l[i]) + 1
        return n_char

    def word_to_tag_from_text(tokens, h):
        cnt, w_t, path = -1, [], []
        unique_tids = set()
        for t in tokens[0:-2]:
            if len(t) < 2:
                w_t.append(path[-1])
                unique_tids.add(path[-1])
                continue
            if t[0] == '<' and t[-2] == '/':
                cnt += 1
                w_t.append(cnt)
                unique_tids.add(cnt)
                continue
            if t[0] == '<' and t[1] != '/':
                cnt += 1
                path.append(cnt)
            w_t.append(path[-1])
            unique_tids.add(path[-1])
            if t[0] == '<' and t[1] == '/':
                del path[-1]
        w_t.append(cnt + 1)
        unique_tids.add(cnt + 1)
        w_t.append(cnt + 2)
        unique_tids.add(cnt + 2)
        assert len(w_t) == len(tokens)
        assert len(path) == 0, print(h)
        return w_t, unique_tids

    def word_tag_offset(html):
        cnt, w_t, t_w, tags, tags_tids = 0, [], [], [], []
        for element in html.descendants:
            if type(element) == bs4.element.Tag:
                content = ' '.join(list(element.strings)).split()
                t_w.append({'start': cnt, 'len': len(content)})
                tags.append('<' + element.name + '>')
                tags_tids.append(element['tid'])
            elif type(element) == bs4.element.NavigableString and element.strip():
                text = element.split()
                tid = element.parent['tid']
                ind = tags_tids.index(tid)
                for _ in text:
                    w_t.append(ind)
                    cnt += 1
                assert cnt == len(w_t)
        w_t.append(len(t_w))
        w_t.append(len(t_w) + 1)
        return w_t

    def subtoken_tag_offset(html, s_tok):
        w_t = word_tag_offset(html)
        s_t = []
        unique_tids = set()
        for i in range(len(s_tok)):
            s_t.append(w_t[s_tok[i]])
            unique_tids.add(w_t[s_tok[i]])
        return s_t, unique_tids

    def subtoken_tag_offset_plus_eon(html, s_tok, all_doc_tokens):
        w_t = word_tag_offset(html)
        s_t = []
        unique_tids = set()
        offset = 0
        for i in range(len(s_tok)):
            if all_doc_tokens[i] not in ('<end-of-node>', tokenizer.sep_token, tokenizer.cls_token):
                s_t.append(w_t[s_tok[i] - offset])
                unique_tids.add(w_t[s_tok[i] - offset])
            else:
                prev_tid = s_t[-1]
                s_t.append(prev_tid)
                offset += 1
        return s_t, unique_tids

    def check_visible(path1, path2, attention_width):
        i = 0
        j = 0
        dis = 0
        lp1 = len(path1)
        lp2 = len(path2)
        while i < lp1 and j < lp2 and path1[i] == path2[j]:
            i += 1
            j += 1

        if i < lp1 and j < lp2:
            dis += lp1 - i + lp2 - j
        else:
            if i == lp1:
                dis += lp2 - j
            else:
                dis += lp1 - i

        if dis <= attention_width:
            return True
        return False


    def from_tids_to_box(html_fn, unique_tids, json_fn):
        sorted_ids = sorted(unique_tids)
        f = open(json_fn, 'r')
        data = json.load(f)
        orig_width, orig_height = data['2']['rect']['width'], data['2']['rect']['height']
        orig_x, orig_y = data['2']['rect']['x'], data['2']['rect']['y']

        return_dict = {}
        for id in sorted_ids:
            if str(id) in data:
                x, y, width, height = data[str(id)]['rect']['x'], data[str(id)]['rect']['y'], data[str(id)]['rect']['width'], data[str(id)]['rect']['height']
                resize_x = (x - orig_x) * 1000 // orig_width
                resize_y = (y - orig_y) * 1000 // orig_height
                
                resize_width = width * 1000 // orig_width
                resize_height = height * 1000 // orig_height

                # if not (resize_x <= 1000 and resize_y <= 1000):
                #     print('before', x, y, width, height)
                #     print('after', resize_x, resize_y, resize_width, resize_height)
                #     print('file name ', html_fn)
                #     # exit(0)

                if resize_x < 0 or resize_y < 0 or resize_width < 0 or resize_height < 0: # meaningless
                    return_dict[id] = [0, 0, 0, 0]
                else:
                    return_dict[id] = [int(resize_x), int(resize_y), int(resize_x+resize_width), int(resize_y+resize_height)]
            else:
                return_dict[id] = [0,0,0,0]
       
        return return_dict

    def get_visible_matrix(unique_tids, tree_id_map, attention_width):
        if attention_width is None:
            return None
        unique_tids_list = list(unique_tids)
        visible_matrix = collections.defaultdict(list)
        for i in range(len(unique_tids_list)):
            if tree_id_map[unique_tids_list[i]] == pad_tree_id_seq:
                visible_matrix[unique_tids_list[i]] = list()
                continue
            visible_matrix[unique_tids_list[i]].append(unique_tids_list[i])
            for j in range(i + 1, len(unique_tids_list)):
                if check_visible(tree_id_map[unique_tids_list[i]], tree_id_map[unique_tids_list[j]], attention_width):
                    visible_matrix[unique_tids_list[i]].append(unique_tids_list[j])
                    visible_matrix[unique_tids_list[j]].append(unique_tids_list[i])
        return visible_matrix

    examples = []
    all_tag_list = set()
    total_num = sum([len(entry["websites"]) for entry in input_data])
    with tqdm(total=total_num, desc="Converting websites to examples") as t:
        for entry in input_data:
            # print('entry', entry)
            domain = entry["domain"]
            for website in entry["websites"]:
                # print('website', website)

                # Generate Doc Tokens
                page_id = website["page_id"]
                # print('page_id', page_id)
                curr_dir = osp.join(root_dir, domain, page_id[0:2], 'processed_data')
                html_fn = osp.join(curr_dir, page_id + '.html')
                json_fn = osp.join(curr_dir, page_id + '.json')

                # print('html', html_fn)

                html_file = open(html_fn).read()
                html_code = bs(html_file, "html.parser")
                raw_text_list, tag_num = html_to_text_list(html_code) 

                # print(raw_text_list)
                # print(tag_num)
                # exit(0)
                doc_tokens = []
                char_to_word_offset = []

                # print(split_flag) # n-eon
                # exit(0)

                if split_flag in ["y-eon", "y-sep", "y-cls"]:
                    prev_is_whitespace = True
                    for i, doc_string in enumerate(raw_text_list):
                        for c in doc_string:
                            if is_whitespace(c):
                                prev_is_whitespace = True
                            else:
                                if prev_is_whitespace:
                                    doc_tokens.append(c)
                                else:
                                    doc_tokens[-1] += c
                                prev_is_whitespace = False
                            char_to_word_offset.append(len(doc_tokens) - 1)

                        if i < len(raw_text_list) - 1:
                            prev_is_whitespace = True
                            char_to_word_offset.append(len(doc_tokens) - 1)

                        if split_flag == "y-eon":
                            doc_tokens.append('<end-of-node>')
                        elif split_flag == "y-sep":
                            doc_tokens.append(tokenizer.sep_token)
                        elif split_flag == "y-cls":
                            doc_tokens.append(tokenizer.cls_token)
                        else:
                            raise ValueError("Split flag should be `y-eon` or `y-sep` or `y-cls`")
                        prev_is_whitespace = True

                elif split_flag =="n-eon" or split_flag == "y-hplm":
                    page_text = ' '.join(raw_text_list) 
                    prev_is_whitespace = True
                    for c in page_text:
                        if is_whitespace(c):
                            prev_is_whitespace = True
                        else:
                            if prev_is_whitespace:
                                doc_tokens.append(c)
                            else:
                                doc_tokens[-1] += c
                            prev_is_whitespace = False
                        char_to_word_offset.append(len(doc_tokens) - 1) 


                doc_tokens.append('no')
                char_to_word_offset.append(len(doc_tokens) - 1)
                doc_tokens.append('yes')
                char_to_word_offset.append(len(doc_tokens) - 1)

                if split_flag == "y-hplm":
                    real_text, tag_list = html_to_text(bs(html_file))
                    all_tag_list = all_tag_list | tag_list
                    char_to_word_offset = adjust_offset(char_to_word_offset, real_text)
                    doc_tokens = real_text.split()
                    doc_tokens.append('no')
                    doc_tokens.append('yes')
                    doc_tokens = [i for i in doc_tokens if i]

                else:
                    tag_list = []

                assert len(doc_tokens) == char_to_word_offset[-1] + 1, (len(doc_tokens), char_to_word_offset[-1])

                if simplify:
                    for qa in website["qas"]:
                        qas_id = qa["id"]
                        example = SRCExample(doc_tokens=doc_tokens, qas_id=qas_id, tag_num=tag_num)
                        examples.append(example)
                    t.update(1)
                else:
                    # Tokenize all doc tokens
                    # tokenize sth like < / >
                    tok_to_orig_index = []
                    orig_to_tok_index = []
                    all_doc_tokens = []
                    for (i, token) in enumerate(doc_tokens):
                        orig_to_tok_index.append(len(all_doc_tokens))
                        if token in tag_list:
                            sub_tokens = [token]
                        else:
                            sub_tokens = tokenizer.tokenize(token)
                        for sub_token in sub_tokens:
                            tok_to_orig_index.append(i)
                            all_doc_tokens.append(sub_token)

                    # Generate extra information for features
                    if split_flag in ["y-eon", "y-sep", "y-cls"]:
                        tok_to_tags_index, unique_tids = subtoken_tag_offset_plus_eon(html_code, tok_to_orig_index,
                                                                                      all_doc_tokens)
                    elif split_flag == "n-eon":
                        tok_to_tags_index, unique_tids = subtoken_tag_offset(html_code, tok_to_orig_index)

                    elif split_flag == "y-hplm":
                        tok_to_tags_index, unique_tids = word_to_tag_from_text(all_doc_tokens, html_code)

                    else:
                        raise ValueError("Unsupported split_flag!")

                

                    xpath_tag_map, xpath_subs_map, tree_id_map = get_xpath_and_treeid4tokens(html_code, unique_tids,
                                                                                             max_depth=max_depth)
                    # tree_id_map : neither truncated nor padded
                    xpath_box = from_tids_to_box(html_fn, unique_tids, json_fn) 


                    assert tok_to_tags_index[-1] == tag_num - 1, (tok_to_tags_index[-1], tag_num - 1)

                    # we get attention_mask here
                    visible_matrix = get_visible_matrix(unique_tids, tree_id_map, attention_width=attention_width)

                    # Process each qas, which is mainly calculate the answer position
                    for qa in website["qas"]:
                        qas_id = qa["id"]
                        question_text = qa["question"]
                        start_position = None
                        end_position = None
                        orig_answer_text = None

                        if is_training:
                            if len(qa["answers"]) != 1:
                                raise ValueError(
                                    "For training, each question should have exactly 1 answer.")
                            answer = qa["answers"][0]
                            orig_answer_text = answer["text"]
                            if answer["element_id"] == -1:
                                num_char = len(char_to_word_offset) - 2
                            else:
                                num_char = calc_num_from_raw_text_list(e_id_to_t_id(answer["element_id"], html_code),
                                                                       raw_text_list)
                            answer_offset = num_char + answer["answer_start"]
                            answer_length = len(orig_answer_text) if answer["element_id"] != -1 else 1
                            start_position = char_to_word_offset[answer_offset]
                            end_position = char_to_word_offset[answer_offset + answer_length - 1]
                            # Only add answers where the text can be exactly recovered from the
                            # document. If this CAN'T happen it's likely due to weird Unicode
                            # stuff so we will just skip the example.
                            #
                            # Note that this means for training mode, every example is NOT
                            # guaranteed to be preserved.
                            actual_text = " ".join([w for w in doc_tokens[start_position:(end_position + 1)]
                                                    if (w[0] != '<' or w[-1] != '>')
                                                    and w != "<end-of-node>"
                                                    and w != tokenizer.sep_token
                                                    and w != tokenizer.cls_token])
                            cleaned_answer_text = " ".join(whitespace_tokenize(orig_answer_text))
                            if actual_text.find(cleaned_answer_text) == -1:
                                logging.warning("Could not find answer of question %s: '%s' vs. '%s'",
                                               qa['id'], actual_text, cleaned_answer_text)
                                continue

                        example = SRCExample(
                            doc_tokens=doc_tokens,
                            qas_id=qas_id,
                            tag_num=tag_num,
                            question_text=question_text,
                            html_code=html_code,
                            orig_answer_text=orig_answer_text,
                            start_position=start_position,
                            end_position=end_position,
                            tok_to_orig_index=tok_to_orig_index,
                            orig_to_tok_index=orig_to_tok_index,
                            all_doc_tokens=all_doc_tokens,
                            tok_to_tags_index=tok_to_tags_index,
                            xpath_tag_map=xpath_tag_map,
                            xpath_subs_map=xpath_subs_map,
                            xpath_box=xpath_box, 
                            tree_id_map=tree_id_map,
                            visible_matrix=visible_matrix
                        )

                        examples.append(example)

                        
                        if args.web_num_features != 0:
                            if len(examples) >= args.web_num_features:
                                return examples, all_tag_list

                    t.update(1)
    return examples, all_tag_list


def load_and_cache_examples(args, tokenizer, max_depth=50, evaluate=False, output_examples=False):
    r"""
    Load and process the raw data.
    """
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset,
        # and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.web_eval_file if evaluate else args.web_train_file

    cached_features_file = os.path.join(args.cache_dir, 'cached_{}_{}_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
        "markuplm",
        str(args.max_seq_length),
        str(max_depth),
        args.web_num_features,
        args.model_type
    ))
    if not os.path.exists(os.path.dirname(cached_features_file)):
        os.makedirs(os.path.dirname(cached_features_file))

    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        print("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
        if output_examples:
            examples, tag_list = read_squad_examples(args, input_file=input_file,
                                                     root_dir=args.web_root_dir,
                                                     is_training=not evaluate,
                                                     tokenizer=tokenizer,
                                                     simplify=True,
                                                     max_depth=max_depth
                                                     )
        else:
            examples = None
    else:
        print("Creating features from dataset file at %s", input_file)

        examples, _ = read_squad_examples(args, input_file=input_file,
                                          root_dir=args.web_root_dir,
                                          is_training=not evaluate,
                                          tokenizer=tokenizer,
                                          simplify=False,
                                          max_depth=max_depth)

        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate,
                                                cls_token=tokenizer.cls_token,
                                                sep_token=tokenizer.sep_token,
                                                pad_token=tokenizer.pad_token_id,
                                                sequence_a_segment_id=0,
                                                sequence_b_segment_id=0,
                                                max_depth=max_depth)

        if args.local_rank in [-1, 0] and args.web_save_features:
            print("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset,
        # and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)

    all_xpath_tags_seq = torch.tensor([f.xpath_tags_seq for f in features], dtype=torch.long)
    all_xpath_subs_seq = torch.tensor([f.xpath_subs_seq for f in features], dtype=torch.long)
    all_xpath_box_seq = torch.tensor([f.xpath_box_seq for f in features], dtype=torch.long)


    if evaluate:
        all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids, all_feature_index,
                               all_xpath_tags_seq, all_xpath_subs_seq, all_xpath_box_seq)
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
        dataset = StrucDataset(all_input_ids, all_input_mask, all_segment_ids,
                               all_xpath_tags_seq, all_xpath_subs_seq,
                               all_start_positions, all_end_positions, all_xpath_box_seq)

    if output_examples:
        dataset = (dataset, examples, features)
    return dataset




def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training,
                                 cls_token='[CLS]', sep_token='[SEP]', pad_token=0,
                                 sequence_a_segment_id=0, sequence_b_segment_id=1,
                                 cls_token_segment_id=0, pad_token_segment_id=0,
                                 mask_padding_with_zero=True, max_depth=50):
    r"""
    Converting the SRC Examples further into the features for all the input doc spans.

    Arguments:
        examples (list[SRCExample]): the list of SRC Examples to process.
        tokenizer (Tokenizer): the tokenizer for PLM in use.
        max_seq_length (int): the max length of the total sub-token sequence, including the question, cls token, sep
                              tokens, and documents; if the length of the input is bigger than max_seq_length, the input
                              will be cut into several doc spans.
        doc_stride (int): the stride length when the input is cut into several doc spans.
        max_query_length (int): the max length of the sub-token sequence of the questions; the question will be truncate
                                if it is longer than max_query_length.
        is_training (bool): True if processing the training set, else False.
        cls_token (str): the cls token in use, default is '[CLS]'.
        sep_token (str): the sep token in use, default is '[SEP]'.
        pad_token (int): the id of the padding token in use when the total sub-token length is smaller that
                         max_seq_length, default is 0 which corresponding to the '[PAD]' token.
        sequence_a_segment_id: the segment id for the first sequence (the question), default is 0.
        sequence_b_segment_id: the segment id for the second sequence (the html file), default is 1.
        cls_token_segment_id: the segment id for the cls token, default is 0.
        pad_token_segment_id: the segment id for the padding tokens, default is 0.
        mask_padding_with_zero: determine the pattern of the returned input mask; 0 for padding tokens and 1 for others
                                when True, and vice versa.
    Returns:
        list[InputFeatures]: the resulting input features for all the input doc spans
    """

    pad_x_tag_seq = [216] * max_depth
    pad_x_subs_seq = [1001] * max_depth
    pad_x_box = [0,0,0,0]
    pad_tree_id_seq = [1001] * max_depth

    unique_id = 1000000000
    features = []
    for (example_index, example) in enumerate(tqdm(examples, desc="Converting examples to features")):

        xpath_tag_map = example.xpath_tag_map
        xpath_subs_map = example.xpath_subs_map
        xpath_box = example.xpath_box  
        tree_id_map = example.tree_id_map
        visible_matrix = example.visible_matrix

        query_tokens = tokenizer.tokenize(example.question_text)
        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_start_position = None
        tok_end_position = None
        if is_training:
            tok_start_position = example.orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = example.orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(example.all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                example.all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(example.all_doc_tokens):
            length = len(example.all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(example.all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            token_to_tag_index = []

            # CLS token at the beginning
            tokens.append(cls_token)
            segment_ids.append(cls_token_segment_id)
            token_to_tag_index.append(example.tag_num)

            # Query
            tokens += query_tokens
            segment_ids += [sequence_a_segment_id] * len(query_tokens)
            token_to_tag_index += [example.tag_num] * len(query_tokens)

            # SEP token
            tokens.append(sep_token)
            segment_ids.append(sequence_a_segment_id)
            token_to_tag_index.append(example.tag_num)

            # Paragraph
            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = example.tok_to_orig_index[split_token_index]
                token_to_tag_index.append(example.tok_to_tags_index[split_token_index])

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(example.all_doc_tokens[split_token_index])
                segment_ids.append(sequence_b_segment_id)
            paragraph_len = doc_span.length

            # SEP token
            tokens.append(sep_token)
            segment_ids.append(sequence_b_segment_id)
            token_to_tag_index.append(example.tag_num)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(pad_token)
                input_mask.append(0 if mask_padding_with_zero else 1)
                segment_ids.append(pad_token_segment_id)
                token_to_tag_index.append(example.tag_num)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length
            assert len(token_to_tag_index) == max_seq_length

            span_is_impossible = False
            start_position = None
            end_position = None
            if is_training:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    span_is_impossible = True
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset
            '''
            if 10 < example_index < 20:
                print("*** Example ***")
                #print("page_id: %s" % (example.qas_id[:-5]))
                #print("token_to_tag_index  :%s" % token_to_tag_index)
                #print(len(token_to_tag_index))
                #print("unique_id: %s" % (unique_id))
                #print("example_index: %s" % (example_index))
                #print("doc_span_index: %s" % (doc_span_index))
                # print("tokens: %s" % " ".join(tokens))

                print("tokens: %s" % " ".join([
                    "%d:%s" % (x, y) for (x, y) in enumerate(tokens)
                ]))

                #print("token_to_orig_map: %s" % " ".join([
                #    "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
                #print(len(token_to_orig_map))
                # print("token_is_max_context: %s" % " ".join([
                #    "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
                # ]))
                #print(len(token_is_max_context))
                #print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                #print(len(input_ids))
                #print(
                #    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
                #print(len(input_mask))
                #print(
                #    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
                #print(len(segment_ids))
                print(f"original answer: {example.orig_answer_text}")
                if is_training and span_is_impossible:
                    print("impossible example")
                if is_training and not span_is_impossible:
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
                    print("start_position: %d" % (start_position))
                    print("end_position: %d" % (end_position))
                    print(
                        "answer: %s" % (answer_text))
            '''

            # print('token_to_tag_index', token_to_tag_index)
            # print('xpath_tag_map', xpath_tag_map)
            # exit(0)

            xpath_tags_seq = [xpath_tag_map.get(tid, pad_x_tag_seq) for tid in token_to_tag_index]  # ok
            xpath_subs_seq = [xpath_subs_map.get(tid, pad_x_subs_seq) for tid in token_to_tag_index]  # ok
            xpath_box_seq = [xpath_box.get(tid, pad_x_box) for tid in token_to_tag_index]
            # print(xpath_box_seq)
            # exit(0)

            # we need to get extended_attention_mask
            if visible_matrix is not None:
                extended_attention_mask = []
                for tid in token_to_tag_index:
                    if tid == example.tag_num:
                        extended_attention_mask.append(input_mask)
                    else:
                        visible_tids = visible_matrix[tid]
                        if len(visible_tids) == 0:
                            extended_attention_mask.append(input_mask)
                            continue
                        visible_per_token = []
                        for i, tid in enumerate(token_to_tag_index):
                            if tid == example.tag_num and input_mask[i] == (1 if mask_padding_with_zero else 0):
                                visible_per_token.append(1 if mask_padding_with_zero else 0)
                            elif tid in visible_tids:
                                visible_per_token.append(1 if mask_padding_with_zero else 0)
                            else:
                                visible_per_token.append(0 if mask_padding_with_zero else 1)
                        extended_attention_mask.append(visible_per_token)  # should be (max_seq_len*max_seq_len)
            else:
                extended_attention_mask = None

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    page_id=example.qas_id[:-5],
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    paragraph_len=paragraph_len,
                    start_position=start_position,
                    end_position=end_position,
                    token_to_tag_index=token_to_tag_index,
                    is_impossible=span_is_impossible,
                    xpath_tags_seq=xpath_tags_seq,
                    xpath_subs_seq=xpath_subs_seq,
                    xpath_box_seq=xpath_box_seq,
                    extended_attention_mask=extended_attention_mask,
                ))
            unique_id += 1

    return features

def get_websrc_dataset(args, tokenizer, evaluate=False, output_examples=False):
    if not evaluate:
        websrc_dataset = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=False)
        return websrc_dataset
    else:
        dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=evaluate, output_examples=True)
        return dataset, examples, features