Spaces:
Sleeping
Sleeping
File size: 15,513 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import BertConfig, BertModel, BertPreTrainedModel, RobertaConfig
# from transformers.modeling_bert import BertLayerNorm, BertOnlyMLMHead
logger = logging.getLogger(__name__)
LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP = {}
LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class Layoutlmv1Config(RobertaConfig):
pretrained_config_archive_map = LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "bert"
def __init__(self, max_2d_position_embeddings=1024, add_linear=False, **kwargs):
super().__init__(**kwargs)
pass
class Layoutlmv1Embeddings(nn.Module):
def __init__(self, config):
super(Layoutlmv1Embeddings, self).__init__()
self.config = config
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0
)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
config.max_2d_position_embeddings = 1024
self.x_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.y_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.h_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.w_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.token_type_embeddings = nn.Embedding(
config.type_vocab_size, config.hidden_size
)
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.doc_linear1 = nn.Linear(config.hidden_size, config.hidden_size)
self.doc_linear2 = nn.Linear(config.hidden_size, config.hidden_size)
self.doc_linear3 = nn.Linear(config.hidden_size, config.hidden_size)
self.doc_linear4 = nn.Linear(config.hidden_size, config.hidden_size)
self.relu = nn.ReLU()
def forward(
self,
input_ids,
bbox,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device
)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
h_position_embeddings = self.h_position_embeddings(
bbox[:, :, 3] - bbox[:, :, 1]
)
w_position_embeddings = self.w_position_embeddings(
bbox[:, :, 2] - bbox[:, :, 0]
)
temp_embeddings = self.doc_linear2(self.relu(self.doc_linear1(
left_position_embeddings
+ upper_position_embeddings
+ right_position_embeddings
+ lower_position_embeddings
+ h_position_embeddings
+ w_position_embeddings
)))
embeddings = (
words_embeddings
+ position_embeddings
+ temp_embeddings
+ token_type_embeddings
)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class Layoutlmv1Model(BertModel):
config_class = Layoutlmv1Config
pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def __init__(self, config):
super(Layoutlmv1Model, self).__init__(config)
self.embeddings = Layoutlmv1Embeddings(config)
self.init_weights()
def forward(
self,
input_ids,
bbox,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=torch.float32
# dtype=next(self.parameters()).dtype # this will trigger error when using high version torch
) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = (
head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
)
head_mask = head_mask.expand(
self.config.num_hidden_layers, -1, -1, -1, -1
)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_hidden_layers
embedding_output = self.embeddings(
input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids
)
encoder_outputs = self.encoder(
embedding_output, extended_attention_mask, head_mask=head_mask
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
outputs = (sequence_output, pooled_output) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
class Layoutlmv1ForTokenClassification(BertPreTrainedModel):
config_class = Layoutlmv1Config
pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = Layoutlmv1Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids,
bbox,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
outputs = self.roberta(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[
2:
] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), scores, (hidden_states), (attentions)
class Layoutlmv1ForMaskedLM(BertPreTrainedModel):
config_class = Layoutlmv1Config
pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def __init__(self, config):
super().__init__(config)
self.bert = Layoutlmv1Model(config)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_input_embeddings(self):
return self.bert.embeddings.word_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
def forward(
self,
input_ids,
bbox,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
masked_lm_labels=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
lm_labels=None,
):
outputs = self.layoutlm(
input_ids,
bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
outputs = (prediction_scores,) + outputs[
2:
] # Add hidden states and attention if they are here
# Although this may seem awkward, BertForMaskedLM supports two scenarios:
# 1. If a tensor that contains the indices of masked labels is provided,
# the cross-entropy is the MLM cross-entropy that measures the likelihood
# of predictions for masked words.
# 2. If `lm_labels` is provided we are in a causal scenario where we
# try to predict the next token for each input in the decoder.
if masked_lm_labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(
prediction_scores.view(-1, self.config.vocab_size),
masked_lm_labels.view(-1),
)
outputs = (masked_lm_loss,) + outputs
return (
outputs
) # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
class Layoutlmv1ForQuestionAnswering(BertPreTrainedModel):
config_class = Layoutlmv1Config
pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = Layoutlmv1Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids,
bbox,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
# inputs_embeds=None,
start_positions=None,
end_positions=None,
# output_attentions=None,
# output_hidden_states=None,
# return_dict=None,
):
# import numpy as np
# torch.set_printoptions(threshold=np.inf)
# print(bbox[0])
# exit(0)
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
"""
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
|