File size: 15,513 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import logging

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import BertConfig, BertModel, BertPreTrainedModel, RobertaConfig
# from transformers.modeling_bert import BertLayerNorm, BertOnlyMLMHead

logger = logging.getLogger(__name__)

LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP = {}

LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class Layoutlmv1Config(RobertaConfig):
    pretrained_config_archive_map = LAYOUTLMV1_PRETRAINED_CONFIG_ARCHIVE_MAP 
    model_type = "bert"

    def __init__(self, max_2d_position_embeddings=1024, add_linear=False, **kwargs):
        super().__init__(**kwargs)
        pass


class Layoutlmv1Embeddings(nn.Module):
    def __init__(self, config):
        super(Layoutlmv1Embeddings, self).__init__()

        self.config = config

        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=0
        )
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size
        )
        config.max_2d_position_embeddings = 1024
        self.x_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.y_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.h_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.w_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.token_type_embeddings = nn.Embedding(
            config.type_vocab_size, config.hidden_size
        )

        self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.doc_linear1 = nn.Linear(config.hidden_size, config.hidden_size)
        self.doc_linear2 = nn.Linear(config.hidden_size, config.hidden_size)
        self.doc_linear3 = nn.Linear(config.hidden_size, config.hidden_size)
        self.doc_linear4 = nn.Linear(config.hidden_size, config.hidden_size)

        self.relu = nn.ReLU()

    def forward(
        self,
        input_ids,
        bbox,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
    ):
        seq_length = input_ids.size(1)
        if position_ids is None:
            position_ids = torch.arange(
                seq_length, dtype=torch.long, device=input_ids.device
            )
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
        upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
        right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
        lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
        h_position_embeddings = self.h_position_embeddings(
            bbox[:, :, 3] - bbox[:, :, 1]
        )
        w_position_embeddings = self.w_position_embeddings(
            bbox[:, :, 2] - bbox[:, :, 0]
        )

        
        temp_embeddings = self.doc_linear2(self.relu(self.doc_linear1(
                    left_position_embeddings
                    + upper_position_embeddings
                    + right_position_embeddings
                    + lower_position_embeddings
                    + h_position_embeddings
                    + w_position_embeddings
                )))

        embeddings = (
            words_embeddings
            + position_embeddings
            + temp_embeddings
            + token_type_embeddings
        )

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class Layoutlmv1Model(BertModel):

    config_class = Layoutlmv1Config
    pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "bert"

    def __init__(self, config):
        super(Layoutlmv1Model, self).__init__(config)
        self.embeddings = Layoutlmv1Embeddings(config)
        self.init_weights()

    def forward(
        self,
        input_ids,
        bbox,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) 

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(
            dtype=torch.float32
            # dtype=next(self.parameters()).dtype # this will trigger error when using high version torch
        )  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None: 
            if head_mask.dim() == 1:
                head_mask = (
                    head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                )
                head_mask = head_mask.expand(
                    self.config.num_hidden_layers, -1, -1, -1, -1
                )
            elif head_mask.dim() == 2:
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        embedding_output = self.embeddings(
            input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids
        )
        encoder_outputs = self.encoder(
            embedding_output, extended_attention_mask, head_mask=head_mask
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        outputs = (sequence_output, pooled_output) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)


class Layoutlmv1ForTokenClassification(BertPreTrainedModel):
    config_class = Layoutlmv1Config
    pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "bert"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.roberta = Layoutlmv1Model(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def forward(
        self,
        input_ids,
        bbox,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):

        outputs = self.roberta(
            input_ids=input_ids,
            bbox=bbox,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[
            2:
        ]  # add hidden states and attention if they are here
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), scores, (hidden_states), (attentions)


class Layoutlmv1ForMaskedLM(BertPreTrainedModel):
    config_class = Layoutlmv1Config
    pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "bert"

    def __init__(self, config):
        super().__init__(config)

        self.bert = Layoutlmv1Model(config)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def get_input_embeddings(self):
        return self.bert.embeddings.word_embeddings

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def forward(
        self,
        input_ids,
        bbox,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        lm_labels=None,
    ):

        outputs = self.layoutlm(
            input_ids,
            bbox,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        outputs = (prediction_scores,) + outputs[
            2:
        ]  # Add hidden states and attention if they are here

        # Although this may seem awkward, BertForMaskedLM supports two scenarios:
        # 1. If a tensor that contains the indices of masked labels is provided,
        #    the cross-entropy is the MLM cross-entropy that measures the likelihood
        #    of predictions for masked words.
        # 2. If `lm_labels` is provided we are in a causal scenario where we
        #    try to predict the next token for each input in the decoder.
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size),
                masked_lm_labels.view(-1),
            )
            outputs = (masked_lm_loss,) + outputs
        return (
            outputs
        )  # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)



class Layoutlmv1ForQuestionAnswering(BertPreTrainedModel):
    config_class = Layoutlmv1Config
    pretrained_model_archive_map = LAYOUTLMV1_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "bert"

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.bert = Layoutlmv1Model(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def forward(
        self,
        input_ids,
        bbox,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        # inputs_embeds=None,
        start_positions=None,
        end_positions=None,
        # output_attentions=None,
        # output_hidden_states=None,
        # return_dict=None,
    ):
        # import numpy as np
        # torch.set_printoptions(threshold=np.inf)
        # print(bbox[0])
        # exit(0)
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
        # return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids=input_ids,
            bbox=bbox,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2


        output = (start_logits, end_logits) + outputs[2:]


        return ((total_loss,) + output) if total_loss is not None else output