File size: 6,864 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import copy

import torch
from torch import nn
from torch.nn import CrossEntropyLoss


class BiaffineAttention(torch.nn.Module):
    """Implements a biaffine attention operator for binary relation classification.

    PyTorch implementation of the biaffine attention operator from "End-to-end neural relation
    extraction using deep biaffine attention" (https://arxiv.org/abs/1812.11275) which can be used
    as a classifier for binary relation classification.

    Args:
        in_features (int): The size of the feature dimension of the inputs.
        out_features (int): The size of the feature dimension of the output.

    Shape:
        - x_1: `(N, *, in_features)` where `N` is the batch dimension and `*` means any number of
          additional dimensisons.
        - x_2: `(N, *, in_features)`, where `N` is the batch dimension and `*` means any number of
          additional dimensions.
        - Output: `(N, *, out_features)`, where `N` is the batch dimension and `*` means any number
            of additional dimensions.

    Examples:
        >>> batch_size, in_features, out_features = 32, 100, 4
        >>> biaffine_attention = BiaffineAttention(in_features, out_features)
        >>> x_1 = torch.randn(batch_size, in_features)
        >>> x_2 = torch.randn(batch_size, in_features)
        >>> output = biaffine_attention(x_1, x_2)
        >>> print(output.size())
        torch.Size([32, 4])
    """

    def __init__(self, in_features, out_features):
        super(BiaffineAttention, self).__init__()

        self.in_features = in_features
        self.out_features = out_features

        self.bilinear = torch.nn.Bilinear(in_features, in_features, out_features, bias=False)
        self.linear = torch.nn.Linear(2 * in_features, out_features, bias=True)

        self.reset_parameters()

    def forward(self, x_1, x_2):
        return self.bilinear(x_1, x_2) + self.linear(torch.cat((x_1, x_2), dim=-1))

    def reset_parameters(self):
        self.bilinear.reset_parameters()
        self.linear.reset_parameters()


class REDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.entity_emb = nn.Embedding(3, config.hidden_size, scale_grad_by_freq=True)
        projection = nn.Sequential(
            nn.Linear(config.hidden_size * 2, config.hidden_size),
            nn.ReLU(),
            nn.Dropout(config.hidden_dropout_prob),
            nn.Linear(config.hidden_size, config.hidden_size // 2),
            nn.ReLU(),
            nn.Dropout(config.hidden_dropout_prob),
        )
        self.ffnn_head = copy.deepcopy(projection)
        self.ffnn_tail = copy.deepcopy(projection)
        self.rel_classifier = BiaffineAttention(config.hidden_size // 2, 2)
        self.loss_fct = CrossEntropyLoss()

    def build_relation(self, relations, entities):
        batch_size = len(relations)
        new_relations = []
        for b in range(batch_size):
            if len(entities[b]["start"]) <= 2:
                entities[b] = {"end": [1, 1], "label": [0, 0], "start": [0, 0]}
            all_possible_relations = set(
                [
                    (i, j)
                    for i in range(len(entities[b]["label"]))
                    for j in range(len(entities[b]["label"]))
                    if entities[b]["label"][i] == 1 and entities[b]["label"][j] == 2
                ]
            )
            if len(all_possible_relations) == 0:
                all_possible_relations = set([(0, 1)])
            positive_relations = set(list(zip(relations[b]["head"], relations[b]["tail"])))
            negative_relations = all_possible_relations - positive_relations
            positive_relations = set([i for i in positive_relations if i in all_possible_relations])
            reordered_relations = list(positive_relations) + list(negative_relations)
            relation_per_doc = {"head": [], "tail": [], "label": []}
            relation_per_doc["head"] = [i[0] for i in reordered_relations]
            relation_per_doc["tail"] = [i[1] for i in reordered_relations]
            relation_per_doc["label"] = [1] * len(positive_relations) + [0] * (
                len(reordered_relations) - len(positive_relations)
            )
            assert len(relation_per_doc["head"]) != 0
            new_relations.append(relation_per_doc)
        return new_relations, entities

    def get_predicted_relations(self, logits, relations, entities):
        pred_relations = []
        for i, pred_label in enumerate(logits.argmax(-1)):
            if pred_label != 1:
                continue
            rel = {}
            rel["head_id"] = relations["head"][i]
            rel["head"] = (entities["start"][rel["head_id"]], entities["end"][rel["head_id"]])
            rel["head_type"] = entities["label"][rel["head_id"]]

            rel["tail_id"] = relations["tail"][i]
            rel["tail"] = (entities["start"][rel["tail_id"]], entities["end"][rel["tail_id"]])
            rel["tail_type"] = entities["label"][rel["tail_id"]]
            rel["type"] = 1
            pred_relations.append(rel)
        return pred_relations

    def forward(self, hidden_states, entities, relations):
        batch_size, max_n_words, context_dim = hidden_states.size()
        device = hidden_states.device
        relations, entities = self.build_relation(relations, entities)
        loss = 0
        all_pred_relations = []
        for b in range(batch_size):
            head_entities = torch.tensor(relations[b]["head"], device=device)
            tail_entities = torch.tensor(relations[b]["tail"], device=device)
            relation_labels = torch.tensor(relations[b]["label"], device=device)
            entities_start_index = torch.tensor(entities[b]["start"], device=device)
            entities_labels = torch.tensor(entities[b]["label"], device=device)
            head_index = entities_start_index[head_entities]
            head_label = entities_labels[head_entities]
            head_label_repr = self.entity_emb(head_label)

            tail_index = entities_start_index[tail_entities]
            tail_label = entities_labels[tail_entities]
            tail_label_repr = self.entity_emb(tail_label)

            head_repr = torch.cat(
                (hidden_states[b][head_index], head_label_repr),
                dim=-1,
            )
            tail_repr = torch.cat(
                (hidden_states[b][tail_index], tail_label_repr),
                dim=-1,
            )
            heads = self.ffnn_head(head_repr)
            tails = self.ffnn_tail(tail_repr)
            logits = self.rel_classifier(heads, tails)
            loss += self.loss_fct(logits, relation_labels)
            pred_relations = self.get_predicted_relations(logits, relations[b], entities[b])
            all_pred_relations.append(pred_relations)
        return loss, all_pred_relations