File size: 25,690 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
from fairseq.models import FairseqEncoder, register_model, FairseqEncoderDecoderModel, register_model_architecture
from fairseq.models.transformer import TransformerDecoder, Embedding, TransformerModel
from fairseq.models.transformer import base_architecture as base_transformer
from fairseq.models.fairseq_encoder import EncoderOut
from torch.nn import Parameter
from fairseq import utils
from torch import Tensor
import torch
from torch.hub import load_state_dict_from_url
from timm.models import create_model
from functools import partial
import logging
import argparse
from typing import Dict, Optional, Tuple
from collections import OrderedDict
import os
logger = logging.getLogger(__name__)
DEFAULT_MAX_TARGET_POSITIONS = 1024
from argparse import Namespace
from omegaconf import DictConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
try:
from .unilm_models import UniLMDecoder
except:
from unilm_models import UniLMDecoder
@register_model('DeiT_TR')
@register_model('TrOCR')
class TrOCRModel(FairseqEncoderDecoderModel):
def load_state_dict(
self,
state_dict,
strict=True,
model_cfg: Optional[DictConfig] = None,
args: Optional[Namespace] = None,
):
if model_cfg is None and args is not None:
logger.warn("using 'args' is deprecated, please update your code to use dataclass config")
model_cfg = convert_namespace_to_omegaconf(args).model
self.upgrade_state_dict(state_dict)
from fairseq.checkpoint_utils import prune_state_dict
new_state_dict = prune_state_dict(state_dict, model_cfg)
if not model_cfg.ape:
model_seq_len = self.state_dict()['encoder.deit.pos_embed'].shape[1]
ckpt_seq_len = new_state_dict['encoder.deit.pos_embed'].shape[1]
if model_seq_len != ckpt_seq_len and getattr(args, "adapt_encoder_pos_embed", None):
logger.warning('Load from encoder.deit {:d} seq len to {:d}'.format(ckpt_seq_len, model_seq_len))
if model_seq_len <= ckpt_seq_len:
new_state_dict['encoder.deit.pos_embed'] = new_state_dict['encoder.deit.pos_embed'][:, :model_seq_len, :]
else:
t = self.state_dict()['encoder.deit.pos_embed']
t[:, :ckpt_seq_len, :] = new_state_dict['encoder.deit.pos_embed']
new_state_dict['encoder.deit.pos_embed'] = t
# if hasattr(model_cfg, "reset_dictionary") and model_cfg.reset_dictionary:
# logger.info('Reset token embed weights and output projection during loading pretrained models')
# del new_state_dict['decoder.embed_tokens.weight']
# del new_state_dict['decoder.output_projection.weight']
return super().load_state_dict(new_state_dict, strict=False)
@staticmethod
def add_args(parser):
TransformerModel.add_args(parser)
parser.add_argument(
'--deit-arch', type=str,
help='the arch name for the DeiT encoder'
)
parser.add_argument(
'--ape', action='store_true',
help='if use absolute_pos_embed'
)
parser.set_defaults(ape=False)
parser.add_argument(
'--mask-ratio', default=0.0, type=float,
help='the mask ratio for the encoder output masking.'
)
parser.add_argument(
'--only-keep-pretrained-decoder-structure', action='store_true',
help='if only keep the pretrained decoder structure'
)
parser.add_argument(
'--only-keep-pretrained-encoder-structure', action='store_true',
help='if only keep the pretrained encoder structure'
)
@staticmethod
def read_args_from_roberta(roberta_args: argparse.Namespace):
# TODO: this would become easier if encoder/decoder where using a similar
# TransformerConfig object
args = argparse.Namespace(**vars(roberta_args))
attr_map = [
("encoder_attention_heads", "decoder_attention_heads"),
("encoder_embed_dim", "decoder_embed_dim"),
("encoder_embed_dim", "decoder_output_dim"),
("encoder_normalize_before", "decoder_normalize_before"),
("encoder_layers_to_keep", "decoder_layers_to_keep"),
("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"),
("encoder_layerdrop", "decoder_layerdrop"),
("encoder_layers", "decoder_layers"),
("encoder_learned_pos", "decoder_learned_pos"),
# should this be set from here ?
("max_positions", "max_target_positions"),
]
for k1, k2 in attr_map:
setattr(args, k2, getattr(roberta_args, k1))
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta
return args
@classmethod
def build_model(cls, args, task):
encoder = TrOCREncoder(
args = args,
dictionary = task.source_dictionary
)
args.encoder_embed_dim = encoder.deit.embed_dim
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
if getattr(args, "decoder_pretrained", None) == None or getattr(args, "decoder_pretrained", None).upper() == 'None':
logger.info('Decoder is randomly initialized.')
decoder_embed_tokens = cls.build_embedding(
args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path
)
decoder = TransformerDecoder(
args = args,
dictionary=task.target_dictionary,
embed_tokens=decoder_embed_tokens,
no_encoder_attn=False
)
elif getattr(args, "decoder_pretrained", None).startswith('roberta2'):
logger.info('Using the learned pos embedding version loading roberta.')
decoder_embed_tokens = cls.build_embedding(
args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path
)
pretrained_model = getattr(args, "decoder_pretrained", None)
specified = pretrained_model.find('-')!=-1
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0':
torch.distributed.barrier()
if specified:
pretrained_model = pretrained_model.replace('-', '.')
logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model))
roberta = torch.hub.load('pytorch/fairseq:main', pretrained_model)
elif args.decoder_layers == 6:
logger.info('Load pre-trained decoder parameters from roberta.base')
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.base')
elif args.decoder_layers == 12:
logger.info('Load pre-trained decoder parameters from roberta.large')
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large')
else:
raise AttributeError('Cannot determined the pre-trained model')
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] == '0':
torch.distributed.barrier()
roberta.model.args.encoder_layers = args.decoder_layers
roberta.model.args.fp16 = args.fp16
roberta_args = TrOCRModel.read_args_from_roberta(roberta.model.args)
roberta_args.encoder_embed_dim = args.encoder_embed_dim
decoder = TransformerDecoder(
roberta_args,
task.target_dictionary,
decoder_embed_tokens,
no_encoder_attn=False,
)
roberta_layers = roberta.model.encoder.sentence_encoder.layers
decoder_layers = decoder.layers
offset = len(roberta_layers) - len(decoder_layers)
assert offset >= 0
decoder_dict = roberta.state_dict()
new_decoder_dict = {}
for key, val in decoder_dict.items():
if key.startswith('model.encoder.sentence_encoder.layers.'):
layer_num = int(key[len('model.encoder.sentence_encoder.layers.'):].split('.')[0])
if layer_num - offset < 0:
continue
else:
new_key = 'model.encoder.sentence_encoder.layers.{}.'.format(
str(layer_num - offset)) + '.'.join(
key[len('model.encoder.sentence_encoder.layers.'):].split('.')[1:])
new_decoder_dict[new_key] = val
else:
new_decoder_dict[key] = val
decoder_dict = new_decoder_dict
for k, w in list(decoder_dict.items()):
if '.lm_head' in k:
k_proj = "output_projection." + k[len('model.encoder.lm_head.'):]
decoder_dict[k_proj] = w.detach().clone()
del decoder_dict[k]
del decoder_dict['_float_tensor']
del decoder_dict['output_projection.weight']
del decoder_dict['output_projection.bias']
del decoder_dict['output_projection.dense.weight']
del decoder_dict['output_projection.dense.bias']
del decoder_dict['output_projection.layer_norm.weight']
del decoder_dict['output_projection.layer_norm.bias']
new_decoder_dict = {}
for key, val in decoder_dict.items():
if "sentence_encoder" in key:
key = key[len('model.encoder.sentence_encoder.'):]
elif "encoder" in key:
key = key[len('model.encoder.'):]
new_decoder_dict[key] = val
if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure:
logger.info('Only keep the pretrained decoder structure.')
pass
else:
missing_keys, unexpected_keys = decoder.load_state_dict(
new_decoder_dict, strict=False
)
elif getattr(args, "decoder_pretrained", None) == 'unilm':
logger.info('Decoder is pretrained using the unilm.')
prefix_of_parameter = 'bert'
decoder_embed_tokens = cls.build_embedding(
args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path
)
decoder = UniLMDecoder(
args,
task.target_dictionary,
decoder_embed_tokens,
no_encoder_attn=False,
)
if hasattr(args, 'decoder_pretrained_url') and args.decoder_pretrained_url != None and args.decoder_pretrained_url != '':
unilm_url = args.decoder_pretrained_url
logger.info('The unilm model url: {}.'.format(unilm_url[:unilm_url.find('?')]))
unilm_state_dict = torch.hub.load_state_dict_from_url(unilm_url)
unilm_layers = OrderedDict([(k, unilm_state_dict[k]) for k in unilm_state_dict.keys() if k.startswith(prefix_of_parameter + '.encoder.layer.')])
unilm_layers_num = []
for k in unilm_layers.keys():
t = k.replace(prefix_of_parameter + '.encoder.layer.', '')
t = t[:t.find('.')]
unilm_layers_num.append(int(t))
unilm_layers_num = max(unilm_layers_num) + 1
offset = unilm_layers_num - len(decoder.layers)
assert offset == 0
decoder_dict = decoder.state_dict()
# embedding
new_pos_weight = torch.zeros_like(decoder_dict['embed_positions.weight'])
# position padding will right offset padding idx + 1
new_pos_weight[task.target_dictionary.pad() + 1:, :] = unilm_state_dict[prefix_of_parameter + '.embeddings.position_embeddings.weight']
new_decoder_dict = {
'embed_tokens.weight': unilm_state_dict[prefix_of_parameter + '.embeddings.word_embeddings.weight'],
'embed_positions.weight': new_pos_weight,
'layernorm_embedding.weight': unilm_state_dict[prefix_of_parameter + '.embeddings.LayerNorm.weight'],
'layernorm_embedding.bias': unilm_state_dict[prefix_of_parameter + '.embeddings.LayerNorm.bias']
}
# layers
key_map = {
'self_attn.k_proj': 'attention.self.key',
'self_attn.v_proj': 'attention.self.value',
'self_attn.q_proj': 'attention.self.query',
'self_attn.out_proj': 'attention.output.dense',
'self_attn_layer_norm': 'attention.output.LayerNorm',
'fc1': 'intermediate.dense',
'fc2': 'output.dense',
'final_layer_norm': 'output.LayerNorm'
}
for layer_id in range(unilm_layers_num):
unilm_prefix = prefix_of_parameter + '.encoder.layer.{}.'.format(layer_id)
decoder_prefix = 'layers.{}.'.format(layer_id)
for key in key_map:
for suffix in ['.weight', '.bias']:
decoder_key = decoder_prefix + key + suffix
unilm_key = unilm_prefix + key_map[key] + suffix
if decoder_key in decoder_dict and unilm_key in unilm_state_dict:
new_decoder_dict[decoder_key] = unilm_state_dict[unilm_key]
if hasattr(args, "reset_dictionary") and args.reset_dictionary:
logger.info('Reset token embedding weights during decoder initialization.')
del new_decoder_dict['embed_tokens.weight']
elif hasattr(args, "adapt_dictionary") and args.adapt_dictionary:
unilm_embed_tokens_weight = new_decoder_dict['embed_tokens.weight']
logger.info('Adapt token embedding weights during decoder initialization from {} to {}'.format(unilm_embed_tokens_weight.shape[0], decoder_embed_tokens.weight.shape[0]))
new_decoder_dict['embed_tokens.weight'] = torch.zeros_like(decoder_dict['embed_tokens.weight'])
new_decoder_dict['embed_tokens.weight'][:min(unilm_embed_tokens_weight.shape[0], decoder_dict['embed_tokens.weight'].shape[0]), :] = unilm_embed_tokens_weight[:min(unilm_embed_tokens_weight.shape[0], decoder_dict['embed_tokens.weight'].shape[0]), :]
if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure:
logger.info('Only keep the pretrained decoder structure.')
pass
else:
missing_keys, unexpected_keys = decoder.load_state_dict(
new_decoder_dict, strict=False
)
else:
logger.warning('You must specify the unilm model url or the decoder is randomly initialized.')
# freeze k_proj bias
for layer in decoder.layers:
layer.self_attn.k_proj.bias.requires_grad = False
elif getattr(args, "decoder_pretrained", None).startswith('roberta'):
logger.info('Using the old version loading roberta.')
decoder_embed_tokens = cls.build_embedding(
args, task.target_dictionary, args.decoder_embed_dim, args.decoder_embed_path
)
decoder = TransformerDecoder(
args = args,
dictionary=task.target_dictionary,
embed_tokens=decoder_embed_tokens,
no_encoder_attn=False
)
pretrained_model = getattr(args, "decoder_pretrained", None)
specified = pretrained_model.find('-')!=-1
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0':
torch.distributed.barrier()
if specified:
pretrained_model = pretrained_model.replace('-', '.')
logger.info('Load pre-trained decoder parameters from {}'.format(pretrained_model))
roberta = torch.hub.load('pytorch/fairseq:main', pretrained_model)
elif args.decoder_layers == 6:
logger.info('Load pre-trained decoder parameters from roberta.base')
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.base')
elif args.decoder_layers == 12:
logger.info('Load pre-trained decoder parameters from roberta.large')
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large')
else:
raise AttributeError('Cannot determined the pre-trained model')
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] == '0':
torch.distributed.barrier()
if hasattr(args, 'only_keep_pretrained_decoder_structure') and args.only_keep_pretrained_decoder_structure:
logger.info('Only keep the pretrained decoder structure.')
pass
else:
decoder.embed_tokens.load_state_dict(roberta.model.encoder.sentence_encoder.embed_tokens.state_dict())
roberta_layers = roberta.model.encoder.sentence_encoder.layers
decoder_layers = decoder.layers
offset = len(roberta_layers) - len(decoder_layers)
assert offset >= 0
for i in range(len(decoder_layers)):
roberta_i = i + offset
decoder_layers[i].self_attn.load_state_dict(roberta_layers[roberta_i].self_attn.state_dict())
decoder_layers[i].self_attn_layer_norm.load_state_dict(roberta_layers[roberta_i].self_attn_layer_norm.state_dict())
else:
raise Exception('Undefined decoder pretraining method.')
model = cls(encoder, decoder)
return model
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
def forward(self, imgs, prev_output_tokens, **kwargs):
encoder_out = self.encoder(imgs, **kwargs) # (seq_len, batch, embed_dim)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
) # (batch, seq_len, vocab_size)
return decoder_out
@register_model_architecture('DeiT_TR', 'deit_base_decoder_base')
def deit_base_decoder_base(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384")
# Transformer Decoder
# args.encoder_embed_dim = 768
base_transformer(args)
@register_model_architecture('DeiT_TR', 'deit_base_decoder_large')
def deit_base_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_384")
# Transformer Decoder
# args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('TrOCR', 'trocr_base')
@register_model_architecture('DeiT_TR', 'beit_base_decoder_large')
def beit_base_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "beit_base_patch16_384")
# Transformer Decoder
# args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('TrOCR', 'trocr_large')
@register_model_architecture('DeiT_TR', 'beit_large_decoder_large')
def beit_large_decoder_large(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "beit_large_patch16_384")
# Transformer Decoder
# args.encoder_embed_dim = 1024
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
@register_model_architecture('DeiT_TR', 'deit_base_decoder_large_custom_size')
def deit_base_decoder_large_custom_size(args):
# DeiT Encoder deit_base_distilled_patch16_custom_size
args.deit_arch = getattr(args, "deit_arch", "deit_base_distilled_patch16_custom_size")
# Transformer Decoder
# args.encoder_embed_dim = 768
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_transformer(args)
def nlrv4_compressed_tiny(args):
args.decoder_learned_pos = True
args.layernorm_embedding = True
args.decoder_attention_heads = 8
args.decoder_embed_dim = 256
args.decoder_output_dim = 256
args.decoder_ffn_embed_dim = 1024
args.dropout = 0.1
args.decoder_layers = 6
args.max_target_positions = 512
@register_model_architecture('TrOCR', 'trocr_small_224')
def trocr_small(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_small_distilled_patch16_224")
nlrv4_compressed_tiny(args)
# Transformer Decoder
base_transformer(args)
@register_model_architecture('TrOCR', 'trocr_small')
@register_model_architecture('TrOCR', 'trocr_small_384')
def trocr_small_384(args):
# DeiT Encoder deit_base_distilled_patch16_384
args.deit_arch = getattr(args, "deit_arch", "deit_small_distilled_patch16_384")
nlrv4_compressed_tiny(args)
# Transformer Decoder
base_transformer(args)
class TrOCREncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
if hasattr(args, 'only_keep_pretrained_encoder_structure') and args.only_keep_pretrained_encoder_structure:
pretrained = False
else:
pretrained = True
if 'custom_size' in args.deit_arch:
self.deit = create_model(args.deit_arch, pretrained=pretrained, img_size=args.input_size, ape=args.ape, mask_ratio=args.mask_ratio)
else:
self.deit = create_model(args.deit_arch, pretrained=pretrained, ape=args.ape, mask_ratio=args.mask_ratio)
self.fp16 = args.fp16
def forward(self, imgs):
if self.fp16:
imgs = imgs.half()
x, encoder_embedding = self.deit.forward_features(imgs) # bs, n + 2, dim
x = x.transpose(0, 1) # n + 2, bs, dim
encoder_padding_mask = torch.zeros(*x.shape[:2]).transpose(0, 1).to(imgs.device)
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"encoder_embedding": [encoder_embedding], # B x T x C
"encoder_states": [], # List[T x B x C]
"src_tokens": [],
"src_lengths": [],
}
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to `new_order`.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
`encoder_out` rearranged according to `new_order`
"""
_encoder_out = encoder_out['encoder_out'][0]
_encoder_padding_mask = encoder_out['encoder_padding_mask'][0]
_encoder_embedding = encoder_out['encoder_embedding'][0]
return {
"encoder_out": [_encoder_out.index_select(1, new_order)],
"encoder_padding_mask": [_encoder_padding_mask.index_select(0, new_order)], # B x T
"encoder_embedding": [_encoder_padding_mask.index_select(0, new_order)], # B x T x C
"encoder_states": [],
"src_tokens": [],
"src_lengths": [],
}
if __name__ == '__main__':
pass
|