Spaces:
Sleeping
Sleeping
File size: 13,748 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Adapted from https://github.com/jmhessel/clipscore/blob/1036465276513621f77f1c2208d742e4a430781f/clipscore.py
'''
Code for CLIPScore (https://arxiv.org/abs/2104.08718)
@inproceedings{hessel2021clipscore,
title={{CLIPScore:} A Reference-free Evaluation Metric for Image Captioning},
author={Hessel, Jack and Holtzman, Ari and Forbes, Maxwell and Bras, Ronan Le and Choi, Yejin},
booktitle={EMNLP},
year={2021}
}
'''
import argparse
import clip
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
import torch
import tqdm
import numpy as np
import sklearn.preprocessing
import collections
import os
import pathlib
import json
import warnings
from packaging import version
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
from pycocoevalcap.meteor.meteor import Meteor
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.cider.cider import Cider
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.spice.spice import Spice
def get_all_metrics(refs, cands, return_per_cap=False):
metrics = []
names = []
pycoco_eval_cap_scorers = [(Bleu(4), 'bleu'),
(Meteor(), 'meteor'),
(Rouge(), 'rouge'),
(Cider(), 'cider'),
(Spice(), 'spice')]
for scorer, name in pycoco_eval_cap_scorers:
overall, per_cap = pycoco_eval(scorer, refs, cands)
if return_per_cap:
metrics.append(per_cap)
else:
metrics.append(overall)
names.append(name)
metrics = dict(zip(names, metrics))
return metrics
def tokenize(refs, cands, no_op=False):
# no_op is a debug option to see how significantly not using the PTB tokenizer
# affects things
tokenizer = PTBTokenizer()
if no_op:
refs = {idx: [r for r in c_refs] for idx, c_refs in enumerate(refs)}
cands = {idx: [c] for idx, c in enumerate(cands)}
else:
refs = {idx: [{'caption':r} for r in c_refs] for idx, c_refs in enumerate(refs)}
cands = {idx: [{'caption':c}] for idx, c in enumerate(cands)}
refs = tokenizer.tokenize(refs)
cands = tokenizer.tokenize(cands)
return refs, cands
def pycoco_eval(scorer, refs, cands):
'''
scorer is assumed to have a compute_score function.
refs is a list of lists of strings
cands is a list of predictions
'''
refs, cands = tokenize(refs, cands)
average_score, scores = scorer.compute_score(refs, cands)
return average_score, scores
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'candidates_json',
type=str,
help='Candidates json mapping from image_id --> candidate.')
parser.add_argument(
'image_dir',
type=str,
help='Directory of images, with the filenames as image ids.')
parser.add_argument(
'--references_json',
default=None,
help='Optional references json mapping from image_id --> [list of references]')
parser.add_argument(
'--compute_other_ref_metrics',
default=1,
type=int,
help='If references is specified, should we compute standard reference-based metrics?')
parser.add_argument(
'--save_per_instance',
default=None,
help='if set, we will save per instance clipscores to this file')
args = parser.parse_args()
if isinstance(args.save_per_instance, str) and not args.save_per_instance.endswith('.json'):
print('if you\'re saving per-instance, please make sure the filepath ends in json.')
quit()
return args
class CLIPCapDataset(torch.utils.data.Dataset):
def __init__(self, data, prefix='A photo depicts'):
self.data = data
self.prefix = prefix
if self.prefix[-1] != ' ':
self.prefix += ' '
def __getitem__(self, idx):
c_data = self.data[idx]
c_data = clip.tokenize(self.prefix + c_data, truncate=True).squeeze()
return {'caption': c_data}
def __len__(self):
return len(self.data)
class CLIPImageDataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
# only 224x224 ViT-B/32 supported for now
self.preprocess = self._transform_test(224)
def _transform_test(self, n_px):
return Compose([
Resize(n_px, interpolation=Image.BICUBIC),
CenterCrop(n_px),
lambda image: image.convert("RGB"),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
def __getitem__(self, idx):
c_data = self.data[idx]
image = Image.open(c_data)
image = self.preprocess(image)
return {'image':image}
def __len__(self):
return len(self.data)
def extract_all_captions(captions, model, device, batch_size=256, num_workers=8):
data = torch.utils.data.DataLoader(
CLIPCapDataset(captions),
batch_size=batch_size, num_workers=num_workers, shuffle=False)
all_text_features = []
with torch.no_grad():
for b in tqdm.tqdm(data):
b = b['caption'].to(device)
all_text_features.append(model.encode_text(b).cpu().numpy())
all_text_features = np.vstack(all_text_features)
return all_text_features
def extract_all_images(images, model, device, batch_size=64, num_workers=8):
data = torch.utils.data.DataLoader(
CLIPImageDataset(images),
batch_size=batch_size, num_workers=num_workers, shuffle=False)
all_image_features = []
with torch.no_grad():
for b in tqdm.tqdm(data):
b = b['image'].to(device)
if device == 'cuda':
b = b.to(torch.float16)
all_image_features.append(model.encode_image(b).cpu().numpy())
all_image_features = np.vstack(all_image_features)
return all_image_features
def get_clip_score(model, images, candidates, device, w=2.5):
'''
get standard image-text clipscore.
images can either be:
- a list of strings specifying filepaths for images
- a precomputed, ordered matrix of image features
'''
if isinstance(images, list):
# need to extract image features
images = extract_all_images(images, model, device)
candidates = extract_all_captions(candidates, model, device)
#as of numpy 1.21, normalize doesn't work properly for float16
if version.parse(np.__version__) < version.parse('1.21'):
images = sklearn.preprocessing.normalize(images, axis=1)
candidates = sklearn.preprocessing.normalize(candidates, axis=1)
else:
warnings.warn(
'due to a numerical instability, new numpy normalization is slightly different than paper results. '
'to exactly replicate paper results, please use numpy version less than 1.21, e.g., 1.20.3.')
images = images / np.sqrt(np.sum(images**2, axis=1, keepdims=True))
candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True))
per = w*np.clip(np.sum(images * candidates, axis=1), 0, None)
return np.mean(per), per, candidates
def get_refonlyclipscore(model, references, candidates, device):
'''
The text only side for refclipscore
'''
if isinstance(candidates, list):
candidates = extract_all_captions(candidates, model, device)
flattened_refs = []
flattened_refs_idxs = []
for idx, refs in enumerate(references):
flattened_refs.extend(refs)
flattened_refs_idxs.extend([idx for _ in refs])
flattened_refs = extract_all_captions(flattened_refs, model, device)
if version.parse(np.__version__) < version.parse('1.21'):
candidates = sklearn.preprocessing.normalize(candidates, axis=1)
flattened_refs = sklearn.preprocessing.normalize(flattened_refs, axis=1)
else:
warnings.warn(
'due to a numerical instability, new numpy normalization is slightly different than paper results. '
'to exactly replicate paper results, please use numpy version less than 1.21, e.g., 1.20.3.')
candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True))
flattened_refs = flattened_refs / np.sqrt(np.sum(flattened_refs**2, axis=1, keepdims=True))
cand_idx2refs = collections.defaultdict(list)
for ref_feats, cand_idx in zip(flattened_refs, flattened_refs_idxs):
cand_idx2refs[cand_idx].append(ref_feats)
assert len(cand_idx2refs) == len(candidates)
cand_idx2refs = {k: np.vstack(v) for k, v in cand_idx2refs.items()}
per = []
for c_idx, cand in tqdm.tqdm(enumerate(candidates)):
cur_refs = cand_idx2refs[c_idx]
all_sims = cand.dot(cur_refs.transpose())
per.append(np.max(all_sims))
return np.mean(per), per
def cal_clipscore(image_ids, image_paths, text_list, device=None, references=None, scale_weight=1):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
model, transform = clip.load("ViT-B/32", device=device, jit=False)
model.eval()
image_feats = extract_all_images(image_paths, model, device, batch_size=64, num_workers=8)
# get image-text clipscore
_, per_instance_image_text, candidate_feats = get_clip_score(model, image_feats, text_list, device, w=scale_weight)
if references:
# get text-text clipscore
_, per_instance_text_text = get_refonlyclipscore(model, references, candidate_feats, device)
# F-score
refclipscores = 2 * per_instance_image_text * per_instance_text_text / (per_instance_image_text + per_instance_text_text)
scores = {image_id: {'CLIPScore': float(clipscore), 'RefCLIPScore': float(refclipscore)}
for image_id, clipscore, refclipscore in
zip(image_ids, per_instance_image_text, refclipscores)}
other_metrics = get_all_metrics(references, text_list)
for k, v in other_metrics.items():
if k == 'bleu':
for bidx, sc in enumerate(v):
print('BLEU-{}: {:.4f}'.format(bidx+1, sc))
else:
print('{}: {:.4f}'.format(k.upper(), v))
print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()])))
print('RefCLIPScore: {:.4f}'.format(np.mean([s['RefCLIPScore'] for s in scores.values()])))
else:
scores = {image_id: {'CLIPScore': float(clipscore)}
for image_id, clipscore in
zip(image_ids, per_instance_image_text)}
print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()])))
return scores
def main():
args = parse_args()
image_paths = [os.path.join(args.image_dir, path) for path in os.listdir(args.image_dir)
if path.endswith(('.png', '.jpg', '.jpeg', '.tiff'))]
image_ids = [pathlib.Path(path).stem for path in image_paths]
with open(args.candidates_json) as f:
candidates = json.load(f)
candidates = [candidates[cid] for cid in image_ids]
if args.references_json:
with open(args.references_json) as f:
references = json.load(f)
references = [references[cid] for cid in image_ids]
if isinstance(references[0], str):
references = [[r] for r in references]
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == 'cpu':
warnings.warn(
'CLIP runs in full float32 on CPU. Results in paper were computed on GPU, which uses float16. '
'If you\'re reporting results on CPU, please note this when you report.')
model, transform = clip.load("ViT-B/32", device=device, jit=False)
model.eval()
image_feats = extract_all_images(
image_paths, model, device, batch_size=64, num_workers=8)
# get image-text clipscore
_, per_instance_image_text, candidate_feats = get_clip_score(
model, image_feats, candidates, device)
if args.references_json:
# get text-text clipscore
_, per_instance_text_text = get_refonlyclipscore(
model, references, candidate_feats, device)
# F-score
refclipscores = 2 * per_instance_image_text * per_instance_text_text / (per_instance_image_text + per_instance_text_text)
scores = {image_id: {'CLIPScore': float(clipscore), 'RefCLIPScore': float(refclipscore)}
for image_id, clipscore, refclipscore in
zip(image_ids, per_instance_image_text, refclipscores)}
else:
scores = {image_id: {'CLIPScore': float(clipscore)}
for image_id, clipscore in
zip(image_ids, per_instance_image_text)}
print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()])))
if args.references_json:
if args.compute_other_ref_metrics:
other_metrics = generation_eval_utils.get_all_metrics(references, candidates)
for k, v in other_metrics.items():
if k == 'bleu':
for bidx, sc in enumerate(v):
print('BLEU-{}: {:.4f}'.format(bidx+1, sc))
else:
print('{}: {:.4f}'.format(k.upper(), v))
print('CLIPScore: {:.4f}'.format(np.mean([s['CLIPScore'] for s in scores.values()])))
print('RefCLIPScore: {:.4f}'.format(np.mean([s['RefCLIPScore'] for s in scores.values()])))
if args.save_per_instance:
with open(args.save_per_instance, 'w') as f:
f.write(json.dumps(scores))
if __name__ == '__main__':
main()
|