File size: 9,863 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F

from dataclasses import dataclass
from typing import Optional, Dict, Tuple
from torch import Tensor
from transformers import (
    AutoModel,
    PreTrainedModel,
)
from transformers.modeling_outputs import ModelOutput

from config import Arguments
from logger_config import logger
from utils import dist_gather_tensor, select_grouped_indices, full_contrastive_scores_and_labels


@dataclass
class BiencoderOutput(ModelOutput):
    q_reps: Optional[Tensor] = None
    p_reps: Optional[Tensor] = None
    loss: Optional[Tensor] = None
    labels: Optional[Tensor] = None
    scores: Optional[Tensor] = None


class BiencoderModel(nn.Module):
    def __init__(self, args: Arguments,
                 lm_q: PreTrainedModel,
                 lm_p: PreTrainedModel):
        super().__init__()
        self.lm_q = lm_q
        self.lm_p = lm_p
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.kl_loss_fn = torch.nn.KLDivLoss(reduction="batchmean", log_target=True)
        self.args = args
        self.pooler = nn.Linear(self.lm_q.config.hidden_size, args.out_dimension) if args.add_pooler else nn.Identity()

        from trainers import BiencoderTrainer
        self.trainer: Optional[BiencoderTrainer] = None

    def forward(self, query: Dict[str, Tensor] = None,
                passage: Dict[str, Tensor] = None):
        assert self.args.process_index >= 0

        scores, labels, q_reps, p_reps, all_scores, all_labels = self._compute_scores(query, passage)

        start = self.args.process_index * q_reps.shape[0]
        group_indices = select_grouped_indices(scores=scores,
                                               group_size=self.args.train_n_passages,
                                               start=start * self.args.train_n_passages)

        if not self.args.do_kd_biencoder:
            # training biencoder from scratch
            if self.args.use_scaled_loss:
                loss = self.cross_entropy(all_scores, all_labels)
                loss *= self.args.world_size if self.args.loss_scale <= 0 else self.args.loss_scale
            else:
                loss = self.cross_entropy(scores, labels)
        else:
            # training biencoder with kd
            # batch_size x train_n_passage
            group_scores = torch.gather(input=scores, dim=1, index=group_indices)
            assert group_scores.shape[1] == self.args.train_n_passages
            group_log_scores = torch.log_softmax(group_scores, dim=-1)
            kd_log_target = torch.log_softmax(query['kd_labels'], dim=-1)

            kd_loss = self.kl_loss_fn(input=group_log_scores, target=kd_log_target)

            # (optionally) mask out hard negatives
            if self.training and self.args.kd_mask_hn:
                scores = torch.scatter(input=scores, dim=1, index=group_indices[:, 1:], value=float('-inf'))
            if self.args.use_scaled_loss:
                ce_loss = self.cross_entropy(all_scores, all_labels)
                ce_loss *= self.args.world_size if self.args.loss_scale <= 0 else self.args.loss_scale
            else:
                ce_loss = self.cross_entropy(scores, labels)

            loss = self.args.kd_cont_loss_weight * ce_loss + kd_loss

        total_n_psg = self.args.world_size * q_reps.shape[0] * self.args.train_n_passages

        return BiencoderOutput(loss=loss, q_reps=q_reps, p_reps=p_reps,
                               labels=labels.contiguous(),
                               scores=scores[:, :total_n_psg].contiguous())

    def _compute_scores(self, query: Dict[str, Tensor] = None,
                        passage: Dict[str, Tensor] = None) -> Tuple:
        q_reps = self._encode(self.lm_q, query)
        p_reps = self._encode(self.lm_p, passage)

        all_q_reps = dist_gather_tensor(q_reps)
        all_p_reps = dist_gather_tensor(p_reps)
        assert all_p_reps.shape[0] == self.args.world_size * q_reps.shape[0] * self.args.train_n_passages

        all_scores, all_labels = full_contrastive_scores_and_labels(
            query=all_q_reps, key=all_p_reps,
            use_all_pairs=self.args.full_contrastive_loss)

        if self.args.l2_normalize:
            if self.args.t_warmup:
                scale = 1 / self.args.t * min(1.0, self.trainer.state.global_step / self.args.warmup_steps)
                scale = max(1.0, scale)
            else:
                scale = 1 / self.args.t
            all_scores = all_scores * scale

        start = self.args.process_index * q_reps.shape[0]
        local_query_indices = torch.arange(start, start + q_reps.shape[0], dtype=torch.long).to(q_reps.device)
        # batch_size x (world_size x batch_size x train_n_passage)
        scores = all_scores.index_select(dim=0, index=local_query_indices)
        labels = all_labels.index_select(dim=0, index=local_query_indices)

        return scores, labels, q_reps, p_reps, all_scores, all_labels

    def _encode(self, encoder: PreTrainedModel, input_dict: dict) -> Optional[torch.Tensor]:
        if not input_dict:
            return None
        outputs = encoder(**{k: v for k, v in input_dict.items() if k not in ['kd_labels']}, return_dict=True)
        hidden_state = outputs.last_hidden_state
        embeds = hidden_state[:, 0]
        embeds = self.pooler(embeds)
        if self.args.l2_normalize:
            embeds = F.normalize(embeds, dim=-1)
        return embeds.contiguous()

    @classmethod
    def build(cls, args: Arguments, **hf_kwargs):
        # load local
        if os.path.isdir(args.model_name_or_path):
            if not args.share_encoder:
                _qry_model_path = os.path.join(args.model_name_or_path, 'query_model')
                _psg_model_path = os.path.join(args.model_name_or_path, 'passage_model')
                if not os.path.exists(_qry_model_path):
                    _qry_model_path = args.model_name_or_path
                    _psg_model_path = args.model_name_or_path
                logger.info(f'loading query model weight from {_qry_model_path}')
                lm_q = AutoModel.from_pretrained(_qry_model_path, **hf_kwargs)
                logger.info(f'loading passage model weight from {_psg_model_path}')
                lm_p = AutoModel.from_pretrained(_psg_model_path, **hf_kwargs)
            else:
                logger.info(f'loading shared model weight from {args.model_name_or_path}')
                lm_q = AutoModel.from_pretrained(args.model_name_or_path, **hf_kwargs)
                lm_p = lm_q
        # load pre-trained
        else:
            lm_q = AutoModel.from_pretrained(args.model_name_or_path, **hf_kwargs)
            lm_p = copy.deepcopy(lm_q) if not args.share_encoder else lm_q

        model = cls(args=args, lm_q=lm_q, lm_p=lm_p)
        return model

    def save(self, output_dir: str):
        if not self.args.share_encoder:
            os.makedirs(os.path.join(output_dir, 'query_model'), exist_ok=True)
            os.makedirs(os.path.join(output_dir, 'passage_model'), exist_ok=True)
            self.lm_q.save_pretrained(os.path.join(output_dir, 'query_model'))
            self.lm_p.save_pretrained(os.path.join(output_dir, 'passage_model'))
        else:
            self.lm_q.save_pretrained(output_dir)
        if self.args.add_pooler:
            torch.save(self.pooler.state_dict(), os.path.join(output_dir, 'pooler.pt'))


class BiencoderModelForInference(BiencoderModel):
    def __init__(self, args: Arguments,
                 lm_q: PreTrainedModel,
                 lm_p: PreTrainedModel):
        nn.Module.__init__(self)
        self.args = args
        self.lm_q = lm_q
        self.lm_p = lm_p
        self.pooler = nn.Linear(self.lm_q.config.hidden_size, args.out_dimension) if args.add_pooler else nn.Identity()

    @torch.no_grad()
    def forward(self, query: Dict[str, Tensor] = None,
                passage: Dict[str, Tensor] = None):
        q_reps = self._encode(self.lm_q, query)
        p_reps = self._encode(self.lm_p, passage)
        return BiencoderOutput(q_reps=q_reps, p_reps=p_reps)

    @classmethod
    def build(cls, args: Arguments, **hf_kwargs):
        model_name_or_path = args.model_name_or_path

        # load local
        if os.path.isdir(model_name_or_path):
            _qry_model_path = os.path.join(model_name_or_path, 'query_model')
            _psg_model_path = os.path.join(model_name_or_path, 'passage_model')
            if os.path.exists(_qry_model_path):
                logger.info(f'found separate weight for query/passage encoders')
                logger.info(f'loading query model weight from {_qry_model_path}')
                lm_q = AutoModel.from_pretrained(_qry_model_path, **hf_kwargs)
                logger.info(f'loading passage model weight from {_psg_model_path}')
                lm_p = AutoModel.from_pretrained(_psg_model_path, **hf_kwargs)
            else:
                logger.info(f'try loading tied weight')
                logger.info(f'loading model weight from {model_name_or_path}')
                lm_q = AutoModel.from_pretrained(model_name_or_path, **hf_kwargs)
                lm_p = lm_q
        else:
            logger.info(f'try loading tied weight {model_name_or_path}')
            lm_q = AutoModel.from_pretrained(model_name_or_path, **hf_kwargs)
            lm_p = lm_q

        model = cls(args=args, lm_q=lm_q, lm_p=lm_p)

        pooler_path = os.path.join(args.model_name_or_path, 'pooler.pt')
        if os.path.exists(pooler_path):
            logger.info('loading pooler weights from local files')
            state_dict = torch.load(pooler_path, map_location="cpu")
            model.pooler.load_state_dict(state_dict)
        else:
            assert not args.add_pooler
            logger.info('No pooler will be loaded')
        return model