Spaces:
Sleeping
Sleeping
File size: 8,125 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import random
import tqdm
import json
from typing import Dict, List, Any
from datasets import load_dataset, Dataset
from dataclasses import dataclass, field
from logger_config import logger
from config import Arguments
from utils import save_json_to_file
@dataclass
class ScoredDoc:
qid: str
pid: str
rank: int
score: float = field(default=-1)
def load_qrels(path: str) -> Dict[str, Dict[str, int]]:
assert path.endswith('.txt')
# qid -> pid -> score
qrels = {}
for line in open(path, 'r', encoding='utf-8'):
qid, _, pid, score = line.strip().split('\t')
if qid not in qrels:
qrels[qid] = {}
qrels[qid][pid] = int(score)
logger.info('Load {} queries {} qrels from {}'.format(len(qrels), sum(len(v) for v in qrels.values()), path))
return qrels
def load_queries(path: str, task_type: str = 'ir') -> Dict[str, str]:
assert path.endswith('.tsv')
if task_type == 'qa':
qid_to_query = load_query_answers(path)
qid_to_query = {k: v['query'] for k, v in qid_to_query.items()}
elif task_type == 'ir':
qid_to_query = {}
for line in open(path, 'r', encoding='utf-8'):
qid, query = line.strip().split('\t')
qid_to_query[qid] = query
else:
raise ValueError('Unknown task type: {}'.format(task_type))
logger.info('Load {} queries from {}'.format(len(qid_to_query), path))
return qid_to_query
def normalize_qa_text(text: str) -> str:
# TriviaQA has some weird formats
# For example: """What breakfast food gets its name from the German word for """"stirrup""""?"""
while text.startswith('"') and text.endswith('"'):
text = text[1:-1].replace('""', '"')
return text
def get_question_key(question: str) -> str:
# For QA dataset, we'll use normalized question strings as dict key
return question
def load_query_answers(path: str) -> Dict[str, Dict[str, Any]]:
assert path.endswith('.tsv')
qid_to_query = {}
for line in open(path, 'r', encoding='utf-8'):
query, answers = line.strip().split('\t')
query = normalize_qa_text(query)
answers = normalize_qa_text(answers)
qid = get_question_key(query)
if qid in qid_to_query:
logger.warning('Duplicate question: {} vs {}'.format(query, qid_to_query[qid]['query']))
continue
qid_to_query[qid] = {}
qid_to_query[qid]['query'] = query
qid_to_query[qid]['answers'] = list(eval(answers))
logger.info('Load {} queries from {}'.format(len(qid_to_query), path))
return qid_to_query
def load_corpus(path: str) -> Dataset:
assert path.endswith('.jsonl') or path.endswith('.jsonl.gz')
# two fields: id, contents
corpus = load_dataset('json', data_files=path)['train']
logger.info('Load {} documents from {} with columns {}'.format(len(corpus), path, corpus.column_names))
logger.info('A random document: {}'.format(random.choice(corpus)))
return corpus
def load_msmarco_predictions(path: str) -> Dict[str, List[ScoredDoc]]:
assert path.endswith('.txt')
qid_to_scored_doc = {}
for line in tqdm.tqdm(open(path, 'r', encoding='utf-8'), desc='load prediction', mininterval=3):
fs = line.strip().split('\t')
qid, pid, rank = fs[:3]
rank = int(rank)
score = round(1 / rank, 4) if len(fs) == 3 else float(fs[3])
if qid not in qid_to_scored_doc:
qid_to_scored_doc[qid] = []
scored_doc = ScoredDoc(qid=qid, pid=pid, rank=rank, score=score)
qid_to_scored_doc[qid].append(scored_doc)
qid_to_scored_doc = {qid: sorted(scored_docs, key=lambda sd: sd.rank)
for qid, scored_docs in qid_to_scored_doc.items()}
logger.info('Load {} query predictions from {}'.format(len(qid_to_scored_doc), path))
return qid_to_scored_doc
def save_preds_to_msmarco_format(preds: Dict[str, List[ScoredDoc]], out_path: str):
with open(out_path, 'w', encoding='utf-8') as writer:
for qid in preds:
for idx, scored_doc in enumerate(preds[qid]):
writer.write('{}\t{}\t{}\t{}\n'.format(qid, scored_doc.pid, idx + 1, round(scored_doc.score, 3)))
logger.info('Successfully saved to {}'.format(out_path))
def save_to_readable_format(in_path: str, corpus: Dataset):
out_path = '{}/readable_{}'.format(os.path.dirname(in_path), os.path.basename(in_path))
dataset: Dataset = load_dataset('json', data_files=in_path)['train']
max_to_keep = 5
def _create_readable_field(samples: Dict[str, List]) -> List:
readable_ex = []
for idx in range(min(len(samples['doc_id']), max_to_keep)):
doc_id = samples['doc_id'][idx]
readable_ex.append({'doc_id': doc_id,
'title': corpus[int(doc_id)].get('title', ''),
'contents': corpus[int(doc_id)]['contents'],
'score': samples['score'][idx]})
return readable_ex
def _mp_func(ex: Dict) -> Dict:
ex['positives'] = _create_readable_field(ex['positives'])
ex['negatives'] = _create_readable_field(ex['negatives'])
return ex
dataset = dataset.map(_mp_func, num_proc=8)
dataset.to_json(out_path, force_ascii=False, lines=False, indent=4)
logger.info('Done convert {} to readable format in {}'.format(in_path, out_path))
def get_rerank_shard_path(args: Arguments, worker_idx: int) -> str:
return '{}_shard_{}'.format(args.rerank_out_path, worker_idx)
def merge_rerank_predictions(args: Arguments, gpu_count: int):
from metrics import trec_eval, compute_mrr
qid_to_scored_doc: Dict[str, List[ScoredDoc]] = {}
for worker_idx in range(gpu_count):
path = get_rerank_shard_path(args, worker_idx)
for line in tqdm.tqdm(open(path, 'r', encoding='utf-8'), 'merge results', mininterval=3):
fs = line.strip().split('\t')
qid, pid, _, score = fs
score = float(score)
if qid not in qid_to_scored_doc:
qid_to_scored_doc[qid] = []
scored_doc = ScoredDoc(qid=qid, pid=pid, rank=-1, score=score)
qid_to_scored_doc[qid].append(scored_doc)
qid_to_scored_doc = {k: sorted(v, key=lambda sd: sd.score, reverse=True) for k, v in qid_to_scored_doc.items()}
ori_preds = load_msmarco_predictions(path=args.rerank_in_path)
for query_id in list(qid_to_scored_doc.keys()):
remain_scored_docs = ori_preds[query_id][args.rerank_depth:]
for idx, sd in enumerate(remain_scored_docs):
# make sure the order is not broken
sd.score = qid_to_scored_doc[query_id][-1].score - idx - 1
qid_to_scored_doc[query_id] += remain_scored_docs
assert len(set([sd.pid for sd in qid_to_scored_doc[query_id]])) == len(qid_to_scored_doc[query_id])
save_preds_to_msmarco_format(qid_to_scored_doc, out_path=args.rerank_out_path)
path_qrels = '{}/{}_qrels.txt'.format(args.data_dir, args.rerank_split)
if os.path.exists(path_qrels):
qrels = load_qrels(path=path_qrels)
all_metrics = trec_eval(qrels=qrels, predictions=qid_to_scored_doc)
all_metrics['mrr'] = compute_mrr(qrels=qrels, predictions=qid_to_scored_doc)
logger.info('{} trec metrics = {}'.format(args.rerank_split, json.dumps(all_metrics, ensure_ascii=False, indent=4)))
metrics_out_path = '{}/metrics_rerank_{}.json'.format(os.path.dirname(args.rerank_out_path), args.rerank_split)
save_json_to_file(all_metrics, metrics_out_path)
else:
logger.warning('No qrels found for {}'.format(args.rerank_split))
# cleanup some intermediate results
for worker_idx in range(gpu_count):
path = get_rerank_shard_path(args, worker_idx)
os.remove(path)
if __name__ == '__main__':
load_qrels('./data/msmarco/dev_qrels.txt')
load_queries('./data/msmarco/dev_queries.tsv')
corpus = load_corpus('./data/msmarco/passages.jsonl.gz')
preds = load_msmarco_predictions('./data/bm25.msmarco.txt')
|