File size: 23,984 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
from __future__ import absolute_import, division, print_function

import logging
import os
import json
import random
import glob
import re

import torch
import tqdm
import torch.utils.data

logger = logging.getLogger(__name__)


class Seq2seqDatasetForBert(torch.utils.data.Dataset):
    def __init__(
            self, features, max_source_len, max_target_len,
            vocab_size, cls_id, sep_id, pad_id, mask_id,
            random_prob, keep_prob, offset, num_training_instances,
            span_len=1, span_prob=1.0):
        self.features = features
        self.max_source_len = max_source_len
        self.max_target_len = max_target_len
        self.offset = offset
        if offset > 0:
            logger.info("  ****  Set offset %d in Seq2seqDatasetForBert ****  ", offset)
        self.cls_id = cls_id
        self.sep_id = sep_id
        self.pad_id = pad_id
        self.random_prob = random_prob
        self.keep_prob = keep_prob
        self.mask_id = mask_id
        self.vocab_size = vocab_size
        self.num_training_instances = num_training_instances
        self.span_len = span_len
        self.span_prob = span_prob

    def __len__(self):
        return int(self.num_training_instances)

    def __trunk(self, ids, max_len):
        if len(ids) > max_len - 1:
            ids = ids[:max_len - 1]
        ids = ids + [self.sep_id]
        return ids

    def __pad(self, ids, max_len):
        if len(ids) < max_len:
            return ids + [self.pad_id] * (max_len - len(ids))
        else:
            assert len(ids) == max_len
            return ids

    def __getitem__(self, idx):
        idx = (self.offset + idx) % len(self.features)
        feature = self.features[idx]
        source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len)
        target_ids = self.__trunk(feature["target_ids"], self.max_target_len)
        pseudo_ids = []
        for tk_id in target_ids:
            p = random.random()
            if p < self.keep_prob:
                pseudo_ids.append(tk_id)
            elif p < self.keep_prob + self.random_prob:
                pseudo_ids.append(random.randint(0, self.vocab_size - 1))
            else:
                pseudo_ids.append(self.mask_id)

        num_source_tokens = len(source_ids)
        num_target_tokens = len(target_ids)

        source_ids = self.__pad(source_ids, self.max_source_len)
        target_ids = self.__pad(target_ids, self.max_target_len)
        pseudo_ids = self.__pad(pseudo_ids, self.max_target_len)

        if self.span_len > 1:
            span_ids = []
            span_id = 1
            while len(span_ids) < num_target_tokens:
                p = random.random()
                if p < self.span_prob:
                    span_len = random.randint(2, self.span_len)
                    span_len = min(span_len, num_target_tokens - len(span_ids))
                else:
                    span_len = 1
                span_ids.extend([span_id] * span_len)
                span_id += 1
            span_ids = self.__pad(span_ids, self.max_target_len)
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids
        else:
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens


# DONE: finish this!!! the 2D input id settings.
class Seq2seqDatasetForLayoutlm(torch.utils.data.Dataset):
    def __init__(
            self, features, max_source_len, max_target_len,
            vocab_size, cls_id, sep_id, pad_id, mask_id,
            random_prob, keep_prob, offset, num_training_instances, layout_flag=True,
            span_len=1, span_prob=1.0):

        self.layout_flag = layout_flag

        self.features = features
        self.max_source_len = max_source_len
        self.max_target_len = max_target_len
        self.offset = offset
        if offset > 0:
            logger.info("  ****  Set offset %d in Seq2seqDatasetForBert ****  ", offset)
        self.cls_id = cls_id
        self.sep_id = sep_id
        self.pad_id = pad_id
        self.random_prob = random_prob
        self.keep_prob = keep_prob
        self.mask_id = mask_id
        self.vocab_size = vocab_size
        self.num_training_instances = num_training_instances
        self.span_len = span_len
        self.span_prob = span_prob

        self.index_sp_id = 0

    def __len__(self):
        return int(self.num_training_instances)

    def __clip_index(self, ids):
        replace_value = 0
        for i in range(len(ids)):
            if ids[i] > self.max_source_len - 1:
                ids[i] = replace_value
        return ids

    def __trunk(self, ids, max_len, simple=False, value=None):
        trunk_value = value if value is not None else self.sep_id
        if len(ids) > max_len - 1:
            ids = ids[:max_len - 1]
        if simple:
            ids = ids + [trunk_value]
        else:
            ids = ids + [[trunk_value, 1000, 1000, 1000, 1000]]
        return ids

    def __pad(self, ids, max_len, simple=False, value=None):
        pad_value = value if value is not None else self.pad_id
        if len(ids) < max_len:
            if simple:
                return ids + [pad_value] * (max_len - len(ids))
            else:
                return ids + [[pad_value, 0, 0, 0, 0]] * (max_len - len(ids))
        else:
            assert len(ids) == max_len
            return ids

    def __getitem__(self, idx):
        if self.layout_flag:
            return self.__getitem_layout__(idx)
        else:
            return self.__getitem_bert__(idx)

    def __getitem_bert__(self, idx):
        idx = (self.offset + idx) % len(self.features)
        feature = self.features[idx]
        source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len, simple=True)
        target_ids = self.__trunk(feature["target_ids"], self.max_target_len, simple=True)
        target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id)

        pseudo_ids = []
        for tk_id in target_ids:
            p = random.random()
            if p < self.keep_prob:
                pseudo_ids.append(tk_id)
            elif p < self.keep_prob + self.random_prob:
                pseudo_ids.append(random.randint(0, self.vocab_size - 1))
            else:
                pseudo_ids.append(self.mask_id)

        num_source_tokens = len(source_ids)
        num_target_tokens = len(target_ids)

        source_ids = self.__pad(source_ids, self.max_source_len, simple=True)
        target_ids = self.__pad(target_ids, self.max_target_len, simple=True)
        pseudo_ids = self.__pad(pseudo_ids, self.max_target_len, simple=True)
        target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id)
        target_index = self.__clip_index(target_index)

        if self.span_len > 1:
            span_ids = []
            span_id = 1
            while len(span_ids) < num_target_tokens:
                p = random.random()
                if p < self.span_prob:
                    span_len = random.randint(2, self.span_len)
                    span_len = min(span_len, num_target_tokens - len(span_ids))
                else:
                    span_len = 1
                span_ids.extend([span_id] * span_len)
                span_id += 1
            span_ids = self.__pad(span_ids, self.max_target_len)
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index
        else:
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index

    def __getitem_layout__(self, idx):
        # TODO: how to initialize the random and masked tokens' pos emb
        #   Simple Solution: only mask the text
        idx = (self.offset + idx) % len(self.features)
        feature = self.features[idx]
        source_ids = self.__trunk([[self.cls_id, 0, 0, 0, 0]] + feature["source_ids"], self.max_source_len)
        target_ids = self.__trunk(feature["target_ids"], self.max_target_len)
        target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id)

        pseudo_ids = []
        for tk_id in target_ids:
            p = random.random()
            if p < self.keep_prob:
                pseudo_ids.append(tk_id)
            elif p < self.keep_prob + self.random_prob:
                pseudo_ids.append([random.randint(0, self.vocab_size - 1)] + [0, 0, 0, 0])  # tk_id[1:])
            else:
                pseudo_ids.append([self.mask_id] + [0, 0, 0, 0])  # tk_id[1:])

        num_source_tokens = len(source_ids)
        num_target_tokens = len(target_ids)

        source_ids = self.__pad(source_ids, self.max_source_len)
        target_ids = self.__pad(target_ids, self.max_target_len)
        pseudo_ids = self.__pad(pseudo_ids, self.max_target_len)
        target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id)
        target_index = self.__clip_index(target_index)

        if self.span_len > 1:
            span_ids = []
            span_id = 1
            while len(span_ids) < num_target_tokens:
                p = random.random()
                if p < self.span_prob:
                    span_len = random.randint(2, self.span_len)
                    span_len = min(span_len, num_target_tokens - len(span_ids))
                else:
                    span_len = 1
                span_ids.extend([span_id] * span_len)
                span_id += 1
            span_ids = self.__pad(span_ids, self.max_target_len)
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index
        else:
            return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index


def batch_list_to_batch_tensors(batch):
    batch_tensors = []
    for x in zip(*batch):
        if isinstance(x[0], torch.Tensor):
            batch_tensors.append(torch.stack(x))
        else:
            batch_tensors.append(torch.tensor(x, dtype=torch.long))
    return batch_tensors


def get_max_epoch_model(output_dir):
    fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin"))
    fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin"))
    if (not fn_model_list) or (not fn_optim_list):
        return None
    os.path.basename(output_dir)
    both_set = set([int(os.path.basename(fn).split('.')[1]) for fn in fn_model_list]
                   ) & set([int(os.path.basename(fn).split('.')[1]) for fn in fn_optim_list])
    if both_set:
        return max(both_set)
    else:
        return None


def load_and_cache_examples(
        example_file, tokenizer, local_rank, cached_features_file, shuffle=True):
    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()

    if cached_features_file is not None and os.path.exists(cached_features_file):
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", example_file)

        examples = []
        with open(example_file, mode="r", encoding="utf-8") as reader:
            for i, line in enumerate(reader):
                if i == 100:
                    break
                examples.append(json.loads(line))
        features = []

        for example in tqdm.tqdm(examples):
            if isinstance(example["src"], list):
                source_tokens = example["src"]
                target_tokens = example["tgt"]
            else:
                source_tokens = tokenizer.tokenize(example["src"])
                target_tokens = tokenizer.tokenize(example["tgt"])
            features.append({
                "source_ids": tokenizer.convert_tokens_to_ids(source_tokens),
                "target_ids": tokenizer.convert_tokens_to_ids(target_tokens),
            })

        if shuffle:
            random.shuffle(features)

        if local_rank in [-1, 0] and cached_features_file is not None:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank == 0:
        torch.distributed.barrier()

    return features


def load_and_cache_line_order_examples(
        example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024,
        layout_flag=True, shuffle=True,
        src_shuffle_rate=0,
        file_info_flag=False,
        ):
    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()

    if cached_features_file is not None and os.path.exists(cached_features_file) and False:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset at %s", example_path)

        examples = []

        with open(example_path, 'r') as layout_reader:
            logger.info(f'Start loading {example_path}')
            for i, line in enumerate(layout_reader):
                examples.append(json.loads(line))

        features = []

        for layout in tqdm.tqdm(examples):
            bleu = layout['bleu']

            if random.random() < src_shuffle_rate:
                # print('Random!!!')
                # DONE: the random src! here has bug! index also need shuffle
                src_layout = layout['src']
                tgt_index = layout['tgt_index']

                source_length = len(src_layout)
                shuffle_index = list(range(source_length))
                random.shuffle(shuffle_index)

                shuffle_layout = ['' for _ in range(source_length)]
                for i, j in enumerate(shuffle_index):
                    # NOTE: map i-th token to j-th token
                    shuffle_layout[j] = src_layout[i]

                shuffle_target_index = [shuffle_index[i] for i in tgt_index]

                layout['tgt_index'] = shuffle_target_index
                layout['src'] = shuffle_layout

            mask = tokenizer.mask_token_id
            src_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + src_layout for tmp_i, src_layout in enumerate(layout['src'])]
            tgt_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + tgt_layout for tmp_i, tgt_layout in enumerate(layout['tgt'])]
            tgt_index = layout['tgt_index']

            feature = {
                "source_ids": src_ids,
                "target_ids": tgt_ids,
                "target_index": tgt_index,
                'bleu': bleu
            }

            if file_info_flag:
                file_info = {'original_filename': layout['filename'], 'filename': layout['filename'],
                             'page_idx': 0}
                feature['file_info'] = file_info

            features.append(feature)

        if shuffle:
            random.shuffle(features)

        if local_rank in [-1, 0] and cached_features_file is not None:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank == 0:
        torch.distributed.barrier()

    return features


def load_and_cache_layoutlm_examples(
        example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024,
        layout_flag=True, shuffle=True,
        src_shuffle_rate=0,
        file_info_flag=False
        ):
    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()

    if cached_features_file is not None and os.path.exists(cached_features_file):
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset at %s", example_path)

        examples = []

        if os.path.isdir(example_path):
            text_files = glob.glob(f'{example_path}/*text*.json')
            layout_files = [re.sub('text|txt', 'layout', x, 1) for x in text_files]
        else:
            text_files = [example_path]
            layout_files = [re.sub('text|txt', 'layout', example_path, 1)]
        for text_file, layout_file in zip(text_files, layout_files):
            with open(text_file, mode='r', encoding='utf-8') as text_reader, \
                    open(layout_file, mode='r', encoding='utf-8') as layout_reader:
                logger.info(f'Start loading {text_file}')
                for i, (text_line, layout_line) in enumerate(zip(text_reader, layout_reader)):
                    if (i + 1) % 10000 == 0:
                        logger.info(f'{i + 1} lines ...')
                    examples.append((json.loads(text_line), json.loads(layout_line)))

        features = []

        def tokenize_text_and_layout_src(_text, _layout, _layout_flag):
            ret = []
            index_split = {}
            words = _text.split()
            # note: (OLD) the index should start from 1: 0-the cls token in src
            # note: (NEW) we need to remove the src embedding's CLS SEP token so we can still start from 0
            # note: (NEWER) we need to at least one blank pos for ignore index in loss function (we use sep's index)
            # NOTE: (NEWER-ER) 1 for all padding tgt index
            new_token_index = 1  # first ordinary index
            for i, (word, box) in enumerate(zip(words, _layout)):

                if (not box[2] >= box[0]) or (not box[3] >= box[1]):
                    continue

                tokens = tokenizer.tokenize(word)
                tokens = tokenizer.convert_tokens_to_ids(tokens)
                new_token_ids = []
                for token in tokens:
                    if _layout_flag:
                        ret.append([token] + box)
                    else:
                        ret.append(token)
                    new_token_ids.append(new_token_index)
                    new_token_index += 1
                index_split[i] = new_token_ids

            return ret, index_split

        def tokenize_text_and_layout_tgt(_text, _layout, _index, _index_split, _layout_flag):
            ret = []
            ret_index = []
            words = _text.split()
            for word, box, i in zip(words, _layout, _index):

                if (not box[2] >= box[0]) or (not box[3] >= box[1]):
                    continue

                tokens = tokenizer.tokenize(word)
                tokens = tokenizer.convert_tokens_to_ids(tokens)
                for token, ii in zip(tokens, _index_split[i]):
                    if _layout_flag:
                        ret.append([token] + box)
                    else:
                        ret.append(token)
                    ii = min(ii, max_src_length - 1)
                    ret_index.append(ii)
            return ret, ret_index

        for text, layout in tqdm.tqdm(examples):
            if 'bleu' in text:
                bleu = text['bleu']
            else:
                bleu = 0

            if random.random() < src_shuffle_rate:
                # print('Random!!!')
                # DONE: the random src! here has bug! index also need shuffle
                src_text = text['src']
                src_layout = layout['src']
                tgt_index = text['tgt_index']

                src_text = src_text.split()
                source_length = len(src_text)
                shuffle_index = list(range(source_length))
                random.shuffle(shuffle_index)

                shuffle_text = ['' for _ in range(source_length)]
                shuffle_layout = ['' for _ in range(source_length)]
                for i, j in enumerate(shuffle_index):
                    # NOTE: map i-th token to j-th token
                    shuffle_text[j] = src_text[i]
                    shuffle_layout[j] = src_layout[i]

                shuffle_target_index = [shuffle_index[i] for i in tgt_index]

                text['src'] = ' '.join(shuffle_text)
                text['tgt_index'] = shuffle_target_index
                layout['src'] = shuffle_layout

            src_ids, src_index_split = tokenize_text_and_layout_src(text['src'], layout['src'],
                                                                    _layout_flag=layout_flag)
            tgt_ids, tgt_index = tokenize_text_and_layout_tgt(text['tgt'], layout['tgt'], text['tgt_index'],
                                                              src_index_split, _layout_flag=layout_flag)

            feature = {
                "source_ids": src_ids,
                "target_ids": tgt_ids,
                "target_index": tgt_index,
                'bleu': bleu
            }

            if file_info_flag:
                file_info = {'original_filename': text['original_filename'], 'filename': text['filename'], 'page_idx': text['page_idx']}
                feature['file_info'] = file_info

            features.append(feature)

        if shuffle:
            random.shuffle(features)

        if local_rank in [-1, 0] and cached_features_file is not None:
            if not os.path.exists(os.path.dirname(cached_features_file)):
                os.makedirs(os.path.dirname(cached_features_file))
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    if local_rank == 0:
        torch.distributed.barrier()

    return features


def convert_src_layout_inputs_to_tokens(inputs, converter, max_src_length, layout_flag=True):
    ret = []
    if not layout_flag:
        for line in inputs:
            ret.append(converter(line["source_ids"])[: max_src_length])
    else:
        for line in inputs:
            raw_text_ids = [x[0] for x in line['source_ids']]
            raw_text = converter(raw_text_ids)
            new_line = [[t] + x[1:] for t, x in zip(raw_text, line['source_ids'])][: max_src_length]
            ret.append(new_line)
    return ret


def convert_tgt_layout_inputs_to_tokens(inputs, converter, max_tgt_length, layout_flag=True):
    ret = []
    if not layout_flag:
        for line in inputs:
            ret.append(converter(line["target_ids"])[: max_tgt_length])
    else:
        for line in inputs:
            raw_text_ids = [x[0] for x in line['target_ids']]
            ret.append(converter(raw_text_ids)[: max_tgt_length])
    return ret


def get_tokens_from_src_and_index(src, index, modifier=None):
    result = []
    for i in index:
        i = modifier(i)
        i = min(i, len(src) - 1)
        if isinstance(src[i], list):
            result.append(src[i][0])
        else:
            result.append(src[i])
    return result


def get_layout_from_src_and_index(src, index, modifier=None):
    result = []
    s = set()
    for i in index:
        i = modifier(i)
        i = min(i, len(src) - 1)
        layout = src[i][1:]
        if repr(layout) not in s:
            result.append(layout)
            s.add(repr(layout))
    return result


def get_everything_from_src_and_index(src, index, modifier=None):
    result = []
    for i in index:
        i = modifier(i)
        i = min(i, len(src) - 1)
        result.append(src[i])
    return result