Spaces:
Sleeping
Sleeping
File size: 23,984 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
from __future__ import absolute_import, division, print_function
import logging
import os
import json
import random
import glob
import re
import torch
import tqdm
import torch.utils.data
logger = logging.getLogger(__name__)
class Seq2seqDatasetForBert(torch.utils.data.Dataset):
def __init__(
self, features, max_source_len, max_target_len,
vocab_size, cls_id, sep_id, pad_id, mask_id,
random_prob, keep_prob, offset, num_training_instances,
span_len=1, span_prob=1.0):
self.features = features
self.max_source_len = max_source_len
self.max_target_len = max_target_len
self.offset = offset
if offset > 0:
logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset)
self.cls_id = cls_id
self.sep_id = sep_id
self.pad_id = pad_id
self.random_prob = random_prob
self.keep_prob = keep_prob
self.mask_id = mask_id
self.vocab_size = vocab_size
self.num_training_instances = num_training_instances
self.span_len = span_len
self.span_prob = span_prob
def __len__(self):
return int(self.num_training_instances)
def __trunk(self, ids, max_len):
if len(ids) > max_len - 1:
ids = ids[:max_len - 1]
ids = ids + [self.sep_id]
return ids
def __pad(self, ids, max_len):
if len(ids) < max_len:
return ids + [self.pad_id] * (max_len - len(ids))
else:
assert len(ids) == max_len
return ids
def __getitem__(self, idx):
idx = (self.offset + idx) % len(self.features)
feature = self.features[idx]
source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len)
target_ids = self.__trunk(feature["target_ids"], self.max_target_len)
pseudo_ids = []
for tk_id in target_ids:
p = random.random()
if p < self.keep_prob:
pseudo_ids.append(tk_id)
elif p < self.keep_prob + self.random_prob:
pseudo_ids.append(random.randint(0, self.vocab_size - 1))
else:
pseudo_ids.append(self.mask_id)
num_source_tokens = len(source_ids)
num_target_tokens = len(target_ids)
source_ids = self.__pad(source_ids, self.max_source_len)
target_ids = self.__pad(target_ids, self.max_target_len)
pseudo_ids = self.__pad(pseudo_ids, self.max_target_len)
if self.span_len > 1:
span_ids = []
span_id = 1
while len(span_ids) < num_target_tokens:
p = random.random()
if p < self.span_prob:
span_len = random.randint(2, self.span_len)
span_len = min(span_len, num_target_tokens - len(span_ids))
else:
span_len = 1
span_ids.extend([span_id] * span_len)
span_id += 1
span_ids = self.__pad(span_ids, self.max_target_len)
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids
else:
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens
# DONE: finish this!!! the 2D input id settings.
class Seq2seqDatasetForLayoutlm(torch.utils.data.Dataset):
def __init__(
self, features, max_source_len, max_target_len,
vocab_size, cls_id, sep_id, pad_id, mask_id,
random_prob, keep_prob, offset, num_training_instances, layout_flag=True,
span_len=1, span_prob=1.0):
self.layout_flag = layout_flag
self.features = features
self.max_source_len = max_source_len
self.max_target_len = max_target_len
self.offset = offset
if offset > 0:
logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset)
self.cls_id = cls_id
self.sep_id = sep_id
self.pad_id = pad_id
self.random_prob = random_prob
self.keep_prob = keep_prob
self.mask_id = mask_id
self.vocab_size = vocab_size
self.num_training_instances = num_training_instances
self.span_len = span_len
self.span_prob = span_prob
self.index_sp_id = 0
def __len__(self):
return int(self.num_training_instances)
def __clip_index(self, ids):
replace_value = 0
for i in range(len(ids)):
if ids[i] > self.max_source_len - 1:
ids[i] = replace_value
return ids
def __trunk(self, ids, max_len, simple=False, value=None):
trunk_value = value if value is not None else self.sep_id
if len(ids) > max_len - 1:
ids = ids[:max_len - 1]
if simple:
ids = ids + [trunk_value]
else:
ids = ids + [[trunk_value, 1000, 1000, 1000, 1000]]
return ids
def __pad(self, ids, max_len, simple=False, value=None):
pad_value = value if value is not None else self.pad_id
if len(ids) < max_len:
if simple:
return ids + [pad_value] * (max_len - len(ids))
else:
return ids + [[pad_value, 0, 0, 0, 0]] * (max_len - len(ids))
else:
assert len(ids) == max_len
return ids
def __getitem__(self, idx):
if self.layout_flag:
return self.__getitem_layout__(idx)
else:
return self.__getitem_bert__(idx)
def __getitem_bert__(self, idx):
idx = (self.offset + idx) % len(self.features)
feature = self.features[idx]
source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len, simple=True)
target_ids = self.__trunk(feature["target_ids"], self.max_target_len, simple=True)
target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id)
pseudo_ids = []
for tk_id in target_ids:
p = random.random()
if p < self.keep_prob:
pseudo_ids.append(tk_id)
elif p < self.keep_prob + self.random_prob:
pseudo_ids.append(random.randint(0, self.vocab_size - 1))
else:
pseudo_ids.append(self.mask_id)
num_source_tokens = len(source_ids)
num_target_tokens = len(target_ids)
source_ids = self.__pad(source_ids, self.max_source_len, simple=True)
target_ids = self.__pad(target_ids, self.max_target_len, simple=True)
pseudo_ids = self.__pad(pseudo_ids, self.max_target_len, simple=True)
target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id)
target_index = self.__clip_index(target_index)
if self.span_len > 1:
span_ids = []
span_id = 1
while len(span_ids) < num_target_tokens:
p = random.random()
if p < self.span_prob:
span_len = random.randint(2, self.span_len)
span_len = min(span_len, num_target_tokens - len(span_ids))
else:
span_len = 1
span_ids.extend([span_id] * span_len)
span_id += 1
span_ids = self.__pad(span_ids, self.max_target_len)
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index
else:
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index
def __getitem_layout__(self, idx):
# TODO: how to initialize the random and masked tokens' pos emb
# Simple Solution: only mask the text
idx = (self.offset + idx) % len(self.features)
feature = self.features[idx]
source_ids = self.__trunk([[self.cls_id, 0, 0, 0, 0]] + feature["source_ids"], self.max_source_len)
target_ids = self.__trunk(feature["target_ids"], self.max_target_len)
target_index = self.__trunk(feature['target_index'], self.max_target_len, simple=True, value=self.index_sp_id)
pseudo_ids = []
for tk_id in target_ids:
p = random.random()
if p < self.keep_prob:
pseudo_ids.append(tk_id)
elif p < self.keep_prob + self.random_prob:
pseudo_ids.append([random.randint(0, self.vocab_size - 1)] + [0, 0, 0, 0]) # tk_id[1:])
else:
pseudo_ids.append([self.mask_id] + [0, 0, 0, 0]) # tk_id[1:])
num_source_tokens = len(source_ids)
num_target_tokens = len(target_ids)
source_ids = self.__pad(source_ids, self.max_source_len)
target_ids = self.__pad(target_ids, self.max_target_len)
pseudo_ids = self.__pad(pseudo_ids, self.max_target_len)
target_index = self.__pad(target_index, self.max_target_len, simple=True, value=self.index_sp_id)
target_index = self.__clip_index(target_index)
if self.span_len > 1:
span_ids = []
span_id = 1
while len(span_ids) < num_target_tokens:
p = random.random()
if p < self.span_prob:
span_len = random.randint(2, self.span_len)
span_len = min(span_len, num_target_tokens - len(span_ids))
else:
span_len = 1
span_ids.extend([span_id] * span_len)
span_id += 1
span_ids = self.__pad(span_ids, self.max_target_len)
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids, target_index
else:
return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_index
def batch_list_to_batch_tensors(batch):
batch_tensors = []
for x in zip(*batch):
if isinstance(x[0], torch.Tensor):
batch_tensors.append(torch.stack(x))
else:
batch_tensors.append(torch.tensor(x, dtype=torch.long))
return batch_tensors
def get_max_epoch_model(output_dir):
fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin"))
fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin"))
if (not fn_model_list) or (not fn_optim_list):
return None
os.path.basename(output_dir)
both_set = set([int(os.path.basename(fn).split('.')[1]) for fn in fn_model_list]
) & set([int(os.path.basename(fn).split('.')[1]) for fn in fn_optim_list])
if both_set:
return max(both_set)
else:
return None
def load_and_cache_examples(
example_file, tokenizer, local_rank, cached_features_file, shuffle=True):
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank not in [-1, 0]:
torch.distributed.barrier()
if cached_features_file is not None and os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", example_file)
examples = []
with open(example_file, mode="r", encoding="utf-8") as reader:
for i, line in enumerate(reader):
if i == 100:
break
examples.append(json.loads(line))
features = []
for example in tqdm.tqdm(examples):
if isinstance(example["src"], list):
source_tokens = example["src"]
target_tokens = example["tgt"]
else:
source_tokens = tokenizer.tokenize(example["src"])
target_tokens = tokenizer.tokenize(example["tgt"])
features.append({
"source_ids": tokenizer.convert_tokens_to_ids(source_tokens),
"target_ids": tokenizer.convert_tokens_to_ids(target_tokens),
})
if shuffle:
random.shuffle(features)
if local_rank in [-1, 0] and cached_features_file is not None:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank == 0:
torch.distributed.barrier()
return features
def load_and_cache_line_order_examples(
example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024,
layout_flag=True, shuffle=True,
src_shuffle_rate=0,
file_info_flag=False,
):
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank not in [-1, 0]:
torch.distributed.barrier()
if cached_features_file is not None and os.path.exists(cached_features_file) and False:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset at %s", example_path)
examples = []
with open(example_path, 'r') as layout_reader:
logger.info(f'Start loading {example_path}')
for i, line in enumerate(layout_reader):
examples.append(json.loads(line))
features = []
for layout in tqdm.tqdm(examples):
bleu = layout['bleu']
if random.random() < src_shuffle_rate:
# print('Random!!!')
# DONE: the random src! here has bug! index also need shuffle
src_layout = layout['src']
tgt_index = layout['tgt_index']
source_length = len(src_layout)
shuffle_index = list(range(source_length))
random.shuffle(shuffle_index)
shuffle_layout = ['' for _ in range(source_length)]
for i, j in enumerate(shuffle_index):
# NOTE: map i-th token to j-th token
shuffle_layout[j] = src_layout[i]
shuffle_target_index = [shuffle_index[i] for i in tgt_index]
layout['tgt_index'] = shuffle_target_index
layout['src'] = shuffle_layout
mask = tokenizer.mask_token_id
src_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + src_layout for tmp_i, src_layout in enumerate(layout['src'])]
tgt_ids = [tokenizer.convert_tokens_to_ids([str(tmp_i)])[:1] + tgt_layout for tmp_i, tgt_layout in enumerate(layout['tgt'])]
tgt_index = layout['tgt_index']
feature = {
"source_ids": src_ids,
"target_ids": tgt_ids,
"target_index": tgt_index,
'bleu': bleu
}
if file_info_flag:
file_info = {'original_filename': layout['filename'], 'filename': layout['filename'],
'page_idx': 0}
feature['file_info'] = file_info
features.append(feature)
if shuffle:
random.shuffle(features)
if local_rank in [-1, 0] and cached_features_file is not None:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank == 0:
torch.distributed.barrier()
return features
def load_and_cache_layoutlm_examples(
example_path, tokenizer, local_rank, cached_features_file, max_src_length=1024,
layout_flag=True, shuffle=True,
src_shuffle_rate=0,
file_info_flag=False
):
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank not in [-1, 0]:
torch.distributed.barrier()
if cached_features_file is not None and os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset at %s", example_path)
examples = []
if os.path.isdir(example_path):
text_files = glob.glob(f'{example_path}/*text*.json')
layout_files = [re.sub('text|txt', 'layout', x, 1) for x in text_files]
else:
text_files = [example_path]
layout_files = [re.sub('text|txt', 'layout', example_path, 1)]
for text_file, layout_file in zip(text_files, layout_files):
with open(text_file, mode='r', encoding='utf-8') as text_reader, \
open(layout_file, mode='r', encoding='utf-8') as layout_reader:
logger.info(f'Start loading {text_file}')
for i, (text_line, layout_line) in enumerate(zip(text_reader, layout_reader)):
if (i + 1) % 10000 == 0:
logger.info(f'{i + 1} lines ...')
examples.append((json.loads(text_line), json.loads(layout_line)))
features = []
def tokenize_text_and_layout_src(_text, _layout, _layout_flag):
ret = []
index_split = {}
words = _text.split()
# note: (OLD) the index should start from 1: 0-the cls token in src
# note: (NEW) we need to remove the src embedding's CLS SEP token so we can still start from 0
# note: (NEWER) we need to at least one blank pos for ignore index in loss function (we use sep's index)
# NOTE: (NEWER-ER) 1 for all padding tgt index
new_token_index = 1 # first ordinary index
for i, (word, box) in enumerate(zip(words, _layout)):
if (not box[2] >= box[0]) or (not box[3] >= box[1]):
continue
tokens = tokenizer.tokenize(word)
tokens = tokenizer.convert_tokens_to_ids(tokens)
new_token_ids = []
for token in tokens:
if _layout_flag:
ret.append([token] + box)
else:
ret.append(token)
new_token_ids.append(new_token_index)
new_token_index += 1
index_split[i] = new_token_ids
return ret, index_split
def tokenize_text_and_layout_tgt(_text, _layout, _index, _index_split, _layout_flag):
ret = []
ret_index = []
words = _text.split()
for word, box, i in zip(words, _layout, _index):
if (not box[2] >= box[0]) or (not box[3] >= box[1]):
continue
tokens = tokenizer.tokenize(word)
tokens = tokenizer.convert_tokens_to_ids(tokens)
for token, ii in zip(tokens, _index_split[i]):
if _layout_flag:
ret.append([token] + box)
else:
ret.append(token)
ii = min(ii, max_src_length - 1)
ret_index.append(ii)
return ret, ret_index
for text, layout in tqdm.tqdm(examples):
if 'bleu' in text:
bleu = text['bleu']
else:
bleu = 0
if random.random() < src_shuffle_rate:
# print('Random!!!')
# DONE: the random src! here has bug! index also need shuffle
src_text = text['src']
src_layout = layout['src']
tgt_index = text['tgt_index']
src_text = src_text.split()
source_length = len(src_text)
shuffle_index = list(range(source_length))
random.shuffle(shuffle_index)
shuffle_text = ['' for _ in range(source_length)]
shuffle_layout = ['' for _ in range(source_length)]
for i, j in enumerate(shuffle_index):
# NOTE: map i-th token to j-th token
shuffle_text[j] = src_text[i]
shuffle_layout[j] = src_layout[i]
shuffle_target_index = [shuffle_index[i] for i in tgt_index]
text['src'] = ' '.join(shuffle_text)
text['tgt_index'] = shuffle_target_index
layout['src'] = shuffle_layout
src_ids, src_index_split = tokenize_text_and_layout_src(text['src'], layout['src'],
_layout_flag=layout_flag)
tgt_ids, tgt_index = tokenize_text_and_layout_tgt(text['tgt'], layout['tgt'], text['tgt_index'],
src_index_split, _layout_flag=layout_flag)
feature = {
"source_ids": src_ids,
"target_ids": tgt_ids,
"target_index": tgt_index,
'bleu': bleu
}
if file_info_flag:
file_info = {'original_filename': text['original_filename'], 'filename': text['filename'], 'page_idx': text['page_idx']}
feature['file_info'] = file_info
features.append(feature)
if shuffle:
random.shuffle(features)
if local_rank in [-1, 0] and cached_features_file is not None:
if not os.path.exists(os.path.dirname(cached_features_file)):
os.makedirs(os.path.dirname(cached_features_file))
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
if local_rank == 0:
torch.distributed.barrier()
return features
def convert_src_layout_inputs_to_tokens(inputs, converter, max_src_length, layout_flag=True):
ret = []
if not layout_flag:
for line in inputs:
ret.append(converter(line["source_ids"])[: max_src_length])
else:
for line in inputs:
raw_text_ids = [x[0] for x in line['source_ids']]
raw_text = converter(raw_text_ids)
new_line = [[t] + x[1:] for t, x in zip(raw_text, line['source_ids'])][: max_src_length]
ret.append(new_line)
return ret
def convert_tgt_layout_inputs_to_tokens(inputs, converter, max_tgt_length, layout_flag=True):
ret = []
if not layout_flag:
for line in inputs:
ret.append(converter(line["target_ids"])[: max_tgt_length])
else:
for line in inputs:
raw_text_ids = [x[0] for x in line['target_ids']]
ret.append(converter(raw_text_ids)[: max_tgt_length])
return ret
def get_tokens_from_src_and_index(src, index, modifier=None):
result = []
for i in index:
i = modifier(i)
i = min(i, len(src) - 1)
if isinstance(src[i], list):
result.append(src[i][0])
else:
result.append(src[i])
return result
def get_layout_from_src_and_index(src, index, modifier=None):
result = []
s = set()
for i in index:
i = modifier(i)
i = min(i, len(src) - 1)
layout = src[i][1:]
if repr(layout) not in s:
result.append(layout)
s.add(repr(layout))
return result
def get_everything_from_src_and_index(src, index, modifier=None):
result = []
for i in index:
i = modifier(i)
i = min(i, len(src) - 1)
result.append(src[i])
return result
|