File size: 15,792 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import logging
import math
import os
import pickle
import random
from time import sleep

import numpy as np
import torch
from nltk.translate.bleu_score import sentence_bleu
from tqdm import tqdm
from transformers import \
    BertTokenizer, RobertaTokenizer
from transformers.tokenization_bert import whitespace_tokenize

import s2s_ft.s2s_loader as seq2seq_loader
from s2s_ft.modeling_decoding import LayoutlmForSeq2SeqDecoder, BertConfig
from s2s_ft.tokenization_minilm import MinilmTokenizer
from s2s_ft.tokenization_unilm import UnilmTokenizer
from s2s_ft.utils import load_and_cache_layoutlm_examples, convert_src_layout_inputs_to_tokens, \
    get_tokens_from_src_and_index, convert_tgt_layout_inputs_to_tokens

TOKENIZER_CLASSES = {
    'bert': BertTokenizer,
    'minilm': MinilmTokenizer,
    'roberta': RobertaTokenizer,
    'unilm': UnilmTokenizer,
    'layoutlm': BertTokenizer,
}


class WhitespaceTokenizer(object):
    def tokenize(self, text):
        return whitespace_tokenize(text)


logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt='%m/%d/%Y %H:%M:%S',
                    level=logging.INFO)
logger = logging.getLogger(__name__)


def detokenize(tk_list):
    r_list = []
    for tk in tk_list:
        if tk.startswith('##') and len(r_list) > 0:
            r_list[-1] = r_list[-1] + tk[2:]
        else:
            r_list.append(tk)
    return r_list


def ascii_print(text):
    text = text.encode("ascii", "ignore")
    print(text)


def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(TOKENIZER_CLASSES.keys()))
    parser.add_argument("--model_path", default=None, type=str, required=True,
                        help="Path to the model checkpoint.")
    parser.add_argument("--config_path", default=None, type=str,
                        help="Path to config.json for the model.")

    parser.add_argument("--sentence_shuffle_rate", default=0, type=float)
    parser.add_argument("--layoutlm_only_layout", action='store_true')

    # tokenizer_name
    parser.add_argument("--tokenizer_name", default=None, type=str, required=True,
                        help="tokenizer name")
    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")

    # decoding parameters
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--amp', action='store_true',
                        help="Whether to use amp for fp16")
    parser.add_argument("--input_file", type=str, help="Input file")
    parser.add_argument("--input_folder", type=str, help="Input folder")
    parser.add_argument("--cached_feature_file", type=str)
    parser.add_argument('--subset', type=int, default=0,
                        help="Decode a subset of the input dataset.")
    parser.add_argument("--output_file", type=str, help="output file")
    parser.add_argument("--split", type=str, default="",
                        help="Data split (train/val/test).")
    parser.add_argument('--tokenized_input', action='store_true',
                        help="Whether the input is tokenized.")
    parser.add_argument('--seed', type=int, default=123,
                        help="random seed for initialization")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument('--batch_size', type=int, default=4,
                        help="Batch size for decoding.")
    parser.add_argument('--beam_size', type=int, default=1,
                        help="Beam size for searching")
    parser.add_argument('--length_penalty', type=float, default=0,
                        help="Length penalty for beam search")

    parser.add_argument('--forbid_duplicate_ngrams', action='store_true')
    parser.add_argument('--forbid_ignore_word', type=str, default=None,
                        help="Forbid the word during forbid_duplicate_ngrams")
    parser.add_argument("--min_len", default=1, type=int)
    parser.add_argument('--need_score_traces', action='store_true')
    parser.add_argument('--ngram_size', type=int, default=3)
    parser.add_argument('--mode', default="s2s",
                        choices=["s2s", "l2r", "both"])
    parser.add_argument('--max_tgt_length', type=int, default=128,
                        help="maximum length of target sequence")
    parser.add_argument('--s2s_special_token', action='store_true',
                        help="New special tokens ([S2S_SEP]/[S2S_CLS]) of S2S.")
    parser.add_argument('--s2s_add_segment', action='store_true',
                        help="Additional segmental for the encoder of S2S.")
    parser.add_argument('--s2s_share_segment', action='store_true',
                        help="Sharing segment embeddings for the encoder of S2S (used with --s2s_add_segment).")
    parser.add_argument('--pos_shift', action='store_true',
                        help="Using position shift for fine-tuning.")
    parser.add_argument("--cache_dir", default=None, type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

    args = parser.parse_args()

    model_path = args.model_path
    assert os.path.exists(model_path), 'model_path ' + model_path + ' not exists!'

    if args.need_score_traces and args.beam_size <= 1:
        raise ValueError(
            "Score trace is only available for beam search with beam size > 1.")
    if args.max_tgt_length >= args.max_seq_length - 2:
        raise ValueError("Maximum tgt length exceeds max seq length - 2.")

    device = torch.device(
        "cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()

    if args.seed > 0:
        random.seed(args.seed)
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)
        if n_gpu > 0:
            torch.cuda.manual_seed_all(args.seed)
    else:
        random_seed = random.randint(0, 10000)
        logger.info("Set random seed as: {}".format(random_seed))
        random.seed(random_seed)
        np.random.seed(random_seed)
        torch.manual_seed(random_seed)
        if n_gpu > 0:
            torch.cuda.manual_seed_all(args.seed)

    tokenizer = TOKENIZER_CLASSES[args.model_type].from_pretrained(
        args.tokenizer_name, do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
        max_len=args.max_seq_length
    )

    if args.model_type == "roberta":
        vocab = tokenizer.encoder
    else:
        vocab = tokenizer.vocab

    # NOTE: tokenizer cannot setattr, so move this to the initialization step
    # tokenizer.max_len = args.max_seq_length

    config_file = args.config_path if args.config_path else os.path.join(args.model_path, "config.json")
    logger.info("Read decoding config from: %s" % config_file)
    config = BertConfig.from_json_file(config_file,
                                       # base_model_type=args.model_type
                                       layoutlm_only_layout_flag=args.layoutlm_only_layout
                                       )

    bi_uni_pipeline = []
    bi_uni_pipeline.append(seq2seq_loader.Preprocess4Seq2seqDecoder(
        list(vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length,
        max_tgt_length=args.max_tgt_length, pos_shift=args.pos_shift,
        source_type_id=config.source_type_id, target_type_id=config.target_type_id,
        cls_token=tokenizer.cls_token, sep_token=tokenizer.sep_token, pad_token=tokenizer.pad_token,
        layout_flag=args.model_type == 'layoutlm'
    ))

    mask_word_id, eos_word_ids, sos_word_id = tokenizer.convert_tokens_to_ids(
        [tokenizer.mask_token, tokenizer.sep_token, tokenizer.sep_token])
    forbid_ignore_set = None
    if args.forbid_ignore_word:
        w_list = []
        for w in args.forbid_ignore_word.split('|'):
            if w.startswith('[') and w.endswith(']'):
                w_list.append(w.upper())
            else:
                w_list.append(w)
        forbid_ignore_set = set(tokenizer.convert_tokens_to_ids(w_list))
    print(args.model_path)
    found_checkpoint_flag = False
    for model_recover_path in [args.model_path.strip()]:
        logger.info("***** Recover model: %s *****", model_recover_path)
        found_checkpoint_flag = True
        model = LayoutlmForSeq2SeqDecoder.from_pretrained(
            model_recover_path, config=config, mask_word_id=mask_word_id, search_beam_size=args.beam_size,
            length_penalty=args.length_penalty, eos_id=eos_word_ids, sos_id=sos_word_id,
            forbid_duplicate_ngrams=args.forbid_duplicate_ngrams, forbid_ignore_set=forbid_ignore_set,
            ngram_size=args.ngram_size, min_len=args.min_len, mode=args.mode,
            max_position_embeddings=args.max_seq_length, pos_shift=args.pos_shift,
        )

        if args.fp16:
            model.half()
        model.to(device)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)

        torch.cuda.empty_cache()
        model.eval()
        next_i = 0
        max_src_length = args.max_seq_length - 2 - args.max_tgt_length
        max_tgt_length = args.max_tgt_length

        example_path = args.input_file if args.input_file else args.input_folder

        to_pred = load_and_cache_layoutlm_examples(
            example_path, tokenizer, local_rank=-1,
            cached_features_file=args.cached_feature_file, shuffle=False, layout_flag=args.model_type == 'layoutlm',
            src_shuffle_rate=args.sentence_shuffle_rate
        )

        input_lines = convert_src_layout_inputs_to_tokens(to_pred, tokenizer.convert_ids_to_tokens, max_src_length,
                                                          layout_flag=args.model_type == 'layoutlm')
        target_lines = convert_tgt_layout_inputs_to_tokens(to_pred, tokenizer.convert_ids_to_tokens, max_tgt_length,
                                                           layout_flag=args.model_type == 'layoutlm')
        target_geo_scores = [x['bleu'] for x in to_pred]

        if args.subset > 0:
            logger.info("Decoding subset: %d", args.subset)
            input_lines = input_lines[:args.subset]

        # NOTE: add the sequence index through enumerate
        input_lines = sorted(list(enumerate(input_lines)), key=lambda x: -len(x[1]))

        score_trace_list = [None] * len(input_lines)
        total_batch = math.ceil(len(input_lines) / args.batch_size)

        fn_out = args.output_file
        fout = open(fn_out, "w", encoding="utf-8")

        with tqdm(total=total_batch) as pbar:
            batch_count = 0
            first_batch = True
            while first_batch or (next_i + args.batch_size <= len(input_lines)):
            # while next_i < len(input_lines):
                _chunk = input_lines[next_i:next_i + args.batch_size]
                buf_id = [x[0] for x in _chunk]
                buf = [x[1] for x in _chunk]
                next_i += args.batch_size
                batch_count += 1
                max_a_len = max([len(x) for x in buf])
                instances = []
                for instance in [(x, max_a_len) for x in buf]:
                    for proc in bi_uni_pipeline:
                        instances.append(proc(instance))
                with torch.no_grad():
                    batch = seq2seq_loader.batch_list_to_batch_tensors(
                        instances)
                    batch = [
                        t.to(device) if t is not None else None for t in batch]
                    input_ids, token_type_ids, position_ids, input_mask, mask_qkv, task_idx = batch
                    traces = model(input_ids, token_type_ids,
                                   position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv)
                    if args.beam_size > 1:
                        traces = {k: v.tolist() for k, v in traces.items()}
                        output_ids = traces['pred_seq']
                    else:
                        output_ids = traces.tolist()
                    for i in range(len(buf)):
                        w_ids = output_ids[i]
                        output_buf = get_tokens_from_src_and_index(src=buf[i], index=w_ids, modifier=lambda x: x-1)
                        output_tokens = []
                        for t in output_buf:
                            if t in (tokenizer.sep_token, tokenizer.pad_token):
                                break
                            output_tokens.append(t)
                        output_tokens = output_tokens[:len(target_lines[buf_id[i]])]
                        if args.model_type == "roberta":
                            output_sequence = tokenizer.convert_tokens_to_string(output_tokens)
                        else:
                            output_sequence = ' '.join(detokenize(output_tokens))
                        if '\n' in output_sequence:
                            output_sequence = " [X_SEP] ".join(output_sequence.split('\n'))

                        target = target_lines[buf_id[i]]
                        target = detokenize(target)
                        result = output_sequence.split()
                        score = sentence_bleu([target], result)

                        geo_score = target_geo_scores[buf_id[i]]
                        target_sequence = ' '.join(target)

                        fout.write('{}\t{:.8f}\t{:.8f}\t{}\t{}\n'.format(buf_id[i], score, geo_score, output_sequence, target_sequence))

                        if first_batch or batch_count % 50 == 0:
                            logger.info("{}: BLEU={:.4f} GEO={:.4f} | {}"
                                        .format(buf_id[i], score, target_geo_scores[buf_id[i]], output_sequence))
                        if args.need_score_traces:
                            score_trace_list[buf_id[i]] = {
                                'scores': traces['scores'][i], 'wids': traces['wids'][i], 'ptrs': traces['ptrs'][i]}
                pbar.update(1)
                first_batch = False

        outscore = open(fn_out, encoding='utf-8')
        bleu_score = geo_score = {}
        total_bleu = total_geo = 0.0
        for line in outscore.readlines():
            id, bleu, geo, out_seq, tgt_seq = line.split('\t')
            bleu_score[int(id)] = float(bleu)
            total_bleu += float(bleu)
            geo_score[int(id)] = float(geo)
            total_geo += float(geo)
        print("avg_bleu", round(100 * total_bleu / len(bleu_score), 1))
        print("avg_geo", round(100 * total_geo / len(geo_score), 1))
        # released model (layoutreader-base-readingbank): avg_bleu 98.2, avg_geo 69.7

        if args.need_score_traces:
            with open(fn_out + ".trace.pickle", "wb") as fout_trace:
                pickle.dump(
                    {"version": 0.0, "num_samples": len(input_lines)}, fout_trace)
                for x in score_trace_list:
                    pickle.dump(x, fout_trace)

    if not found_checkpoint_flag:
        logger.info("Not found the model checkpoint file!")


if __name__ == "__main__":
    main()