Spaces:
Sleeping
Sleeping
File size: 10,334 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torchvision.transforms.functional as F
import warnings
import math
import random
import numpy as np
from PIL import Image
import torch
from detectron2.data.detection_utils import read_image
from detectron2.data.transforms import ResizeTransform, TransformList
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
def load_image(image_path):
image = read_image(image_path, format="BGR")
h = image.shape[0]
w = image.shape[1]
img_trans = TransformList([ResizeTransform(h=h, w=w, new_h=224, new_w=224)])
image = torch.tensor(img_trans.apply_image(image).copy()).permute(2, 0, 1) # copy to make it writeable
return image, (w, h)
def crop(image, i, j, h, w, boxes=None):
cropped_image = F.crop(image, i, j, h, w)
if boxes is not None:
# Currently we cannot use this case since when some boxes is out of the cropped image,
# it may be better to drop out these boxes along with their text input (instead of min or clamp)
# which haven't been implemented here
max_size = torch.as_tensor([w, h], dtype=torch.float32)
cropped_boxes = torch.as_tensor(boxes) - torch.as_tensor([j, i, j, i])
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
cropped_boxes = cropped_boxes.clamp(min=0)
boxes = cropped_boxes.reshape(-1, 4)
return cropped_image, boxes
def resize(image, size, interpolation, boxes=None):
# It seems that we do not need to resize boxes here, since the boxes will be resized to 1000x1000 finally,
# which is compatible with a square image size of 224x224
rescaled_image = F.resize(image, size, interpolation)
if boxes is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
# boxes = boxes.copy()
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
return rescaled_image, scaled_boxes
def clamp(num, min_value, max_value):
return max(min(num, max_value), min_value)
def get_bb(bb, page_size):
bbs = [float(j) for j in bb]
xs, ys = [], []
for i, b in enumerate(bbs):
if i % 2 == 0:
xs.append(b)
else:
ys.append(b)
(width, height) = page_size
return_bb = [
clamp(min(xs), 0, width - 1),
clamp(min(ys), 0, height - 1),
clamp(max(xs), 0, width - 1),
clamp(max(ys), 0, height - 1),
]
return_bb = [
int(1000 * return_bb[0] / width),
int(1000 * return_bb[1] / height),
int(1000 * return_bb[2] / width),
int(1000 * return_bb[3] / height),
]
return return_bb
class ToNumpy:
def __call__(self, pil_img):
np_img = np.array(pil_img, dtype=np.uint8)
if np_img.ndim < 3:
np_img = np.expand_dims(np_img, axis=-1)
np_img = np.rollaxis(np_img, 2) # HWC to CHW
return np_img
class ToTensor:
def __init__(self, dtype=torch.float32):
self.dtype = dtype
def __call__(self, pil_img):
np_img = np.array(pil_img, dtype=np.uint8)
if np_img.ndim < 3:
np_img = np.expand_dims(np_img, axis=-1)
np_img = np.rollaxis(np_img, 2) # HWC to CHW
return torch.from_numpy(np_img).to(dtype=self.dtype)
_pil_interpolation_to_str = {
F.InterpolationMode.NEAREST: 'F.InterpolationMode.NEAREST',
F.InterpolationMode.BILINEAR: 'F.InterpolationMode.BILINEAR',
F.InterpolationMode.BICUBIC: 'F.InterpolationMode.BICUBIC',
F.InterpolationMode.LANCZOS: 'F.InterpolationMode.LANCZOS',
F.InterpolationMode.HAMMING: 'F.InterpolationMode.HAMMING',
F.InterpolationMode.BOX: 'F.InterpolationMode.BOX',
}
def _pil_interp(method):
if method == 'bicubic':
return F.InterpolationMode.BICUBIC
elif method == 'lanczos':
return F.InterpolationMode.LANCZOS
elif method == 'hamming':
return F.InterpolationMode.HAMMING
else:
# default bilinear, do we want to allow nearest?
return F.InterpolationMode.BILINEAR
class Compose:
"""Composes several transforms together. This transform does not support torchscript.
Please, see the note below.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.PILToTensor(),
>>> transforms.ConvertImageDtype(torch.float),
>>> ])
.. note::
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
>>> transforms = torch.nn.Sequential(
>>> transforms.CenterCrop(10),
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>> )
>>> scripted_transforms = torch.jit.script(transforms)
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
`lambda` functions or ``PIL.Image``.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, augmentation=False, box=None):
for t in self.transforms:
img = t(img, augmentation, box)
return img
class RandomResizedCropAndInterpolationWithTwoPic:
"""Crop the given PIL Image to random size and aspect ratio with random interpolation.
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size: expected output size of each edge
scale: range of size of the origin size cropped
ratio: range of aspect ratio of the origin aspect ratio cropped
interpolation: Default: PIL.Image.BILINEAR
"""
def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.),
interpolation='bilinear', second_interpolation='lanczos'):
if isinstance(size, tuple):
self.size = size
else:
self.size = (size, size)
if second_size is not None:
if isinstance(second_size, tuple):
self.second_size = second_size
else:
self.second_size = (second_size, second_size)
else:
self.second_size = None
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
warnings.warn("range should be of kind (min, max)")
self.interpolation = _pil_interp(interpolation)
self.second_interpolation = _pil_interp(second_interpolation)
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image): Image to be cropped.
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
area = img.size[0] * img.size[1]
for attempt in range(10):
target_area = random.uniform(*scale) * area
log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
aspect_ratio = math.exp(random.uniform(*log_ratio))
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size[0] and h <= img.size[1]:
i = random.randint(0, img.size[1] - h)
j = random.randint(0, img.size[0] - w)
return i, j, h, w
# Fallback to central crop
in_ratio = img.size[0] / img.size[1]
if in_ratio < min(ratio):
w = img.size[0]
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = img.size[1]
w = int(round(h * max(ratio)))
else: # whole image
w = img.size[0]
h = img.size[1]
i = (img.size[1] - h) // 2
j = (img.size[0] - w) // 2
return i, j, h, w
def __call__(self, img, augmentation=False, box=None):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
if augmentation:
i, j, h, w = self.get_params(img, self.scale, self.ratio)
img = F.crop(img, i, j, h, w)
# img, box = crop(img, i, j, h, w, box)
img = F.resize(img, self.size, self.interpolation)
second_img = F.resize(img, self.second_size, self.second_interpolation) \
if self.second_size is not None else None
return img, second_img
def __repr__(self):
if isinstance(self.interpolation, (tuple, list)):
interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation])
else:
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
format_string += ', interpolation={0}'.format(interpolate_str)
if self.second_size is not None:
format_string += ', second_size={0}'.format(self.second_size)
format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation])
format_string += ')'
return format_string
def pil_loader(path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
|