Spaces:
Sleeping
Sleeping
File size: 6,279 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import torch
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from transformers import BatchEncoding, PreTrainedTokenizerBase
from transformers.data.data_collator import (
DataCollatorMixin,
_torch_collate_batch,
)
from transformers.file_utils import PaddingStrategy
from typing import NewType
InputDataClass = NewType("InputDataClass", Any)
def pre_calc_rel_mat(segment_ids):
valid_span = torch.zeros((segment_ids.shape[0], segment_ids.shape[1], segment_ids.shape[1]),
device=segment_ids.device, dtype=torch.bool)
for i in range(segment_ids.shape[0]):
for j in range(segment_ids.shape[1]):
valid_span[i, j, :] = segment_ids[i, :] == segment_ids[i, j]
return valid_span
@dataclass
class DataCollatorForKeyValueExtraction(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
images = None
if "images" in features[0]:
images = torch.stack([torch.tensor(d.pop("images")) for d in features])
IMAGE_LEN = int(images.shape[-1] / 16) * int(images.shape[-1] / 16) + 1
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if images is not None:
batch["images"] = images
batch = {k: torch.tensor(v, dtype=torch.int64) if isinstance(v[0], list) and k == 'attention_mask' else v
for k, v in batch.items()}
visual_attention_mask = torch.ones((len(batch['input_ids']), IMAGE_LEN), dtype=torch.long)
batch["attention_mask"] = torch.cat([batch['attention_mask'], visual_attention_mask], dim=1)
if labels is None:
return batch
has_bbox_input = "bbox" in features[0]
has_position_input = "position_ids" in features[0]
padding_idx=self.tokenizer.pad_token_id
sequence_length = torch.tensor(batch["input_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch["labels"] = [label + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels]
if has_bbox_input:
batch["bbox"] = [bbox + [[0, 0, 0, 0]] * (sequence_length - len(bbox)) for bbox in batch["bbox"]]
if has_position_input:
batch["position_ids"] = [position_id + [padding_idx] * (sequence_length - len(position_id))
for position_id in batch["position_ids"]]
else:
batch["labels"] = [[self.label_pad_token_id] * (sequence_length - len(label)) + label for label in labels]
if has_bbox_input:
batch["bbox"] = [[[0, 0, 0, 0]] * (sequence_length - len(bbox)) + bbox for bbox in batch["bbox"]]
if has_position_input:
batch["position_ids"] = [[padding_idx] * (sequence_length - len(position_id))
+ position_id for position_id in batch["position_ids"]]
if 'segment_ids' in batch:
assert 'position_ids' in batch
for i in range(len(batch['segment_ids'])):
batch['segment_ids'][i] = batch['segment_ids'][i] + [batch['segment_ids'][i][-1] + 1] * (sequence_length - len(batch['segment_ids'][i])) + [
batch['segment_ids'][i][-1] + 2] * IMAGE_LEN
batch = {k: torch.tensor(v, dtype=torch.int64) if isinstance(v[0], list) else v for k, v in batch.items()}
if 'segment_ids' in batch:
valid_span = pre_calc_rel_mat(
segment_ids=batch['segment_ids']
)
batch['valid_span'] = valid_span
del batch['segment_ids']
if images is not None:
visual_labels = torch.ones((len(batch['input_ids']), IMAGE_LEN), dtype=torch.long) * -100
batch["labels"] = torch.cat([batch['labels'], visual_labels], dim=1)
return batch
|