File size: 6,649 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn

from detectron2.config import configurable
from detectron2.structures import ImageList, Instances
from detectron2.utils.events import get_event_storage

from detectron2.modeling.backbone import Backbone, build_backbone
from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY

from detectron2.modeling.meta_arch import GeneralizedRCNN

from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference_single_image
from contextlib import contextmanager
from itertools import count

@META_ARCH_REGISTRY.register()
class VLGeneralizedRCNN(GeneralizedRCNN):
    """
    Generalized R-CNN. Any models that contains the following three components:
    1. Per-image feature extraction (aka backbone)
    2. Region proposal generation
    3. Per-region feature extraction and prediction
    """

    def forward(self, batched_inputs: List[Dict[str, torch.Tensor]]):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
                Each item in the list contains the inputs for one image.
                For now, each item in the list is a dict that contains:

                * image: Tensor, image in (C, H, W) format.
                * instances (optional): groundtruth :class:`Instances`
                * proposals (optional): :class:`Instances`, precomputed proposals.

                Other information that's included in the original dicts, such as:

                * "height", "width" (int): the output resolution of the model, used in inference.
                  See :meth:`postprocess` for details.

        Returns:
            list[dict]:
                Each dict is the output for one input image.
                The dict contains one key "instances" whose value is a :class:`Instances`.
                The :class:`Instances` object has the following keys:
                "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints"
        """
        if not self.training:
            return self.inference(batched_inputs)

        images = self.preprocess_image(batched_inputs)
        if "instances" in batched_inputs[0]:
            gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
        else:
            gt_instances = None

        # features = self.backbone(images.tensor)
        input = self.get_batch(batched_inputs, images)
        features = self.backbone(input)

        if self.proposal_generator is not None:
            proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
        else:
            assert "proposals" in batched_inputs[0]
            proposals = [x["proposals"].to(self.device) for x in batched_inputs]
            proposal_losses = {}

        _, detector_losses = self.roi_heads(images, features, proposals, gt_instances)
        if self.vis_period > 0:
            storage = get_event_storage()
            if storage.iter % self.vis_period == 0:
                self.visualize_training(batched_inputs, proposals)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)
        return losses

    def inference(
        self,
        batched_inputs: List[Dict[str, torch.Tensor]],
        detected_instances: Optional[List[Instances]] = None,
        do_postprocess: bool = True,
    ):
        """
        Run inference on the given inputs.

        Args:
            batched_inputs (list[dict]): same as in :meth:`forward`
            detected_instances (None or list[Instances]): if not None, it
                contains an `Instances` object per image. The `Instances`
                object contains "pred_boxes" and "pred_classes" which are
                known boxes in the image.
                The inference will then skip the detection of bounding boxes,
                and only predict other per-ROI outputs.
            do_postprocess (bool): whether to apply post-processing on the outputs.

        Returns:
            When do_postprocess=True, same as in :meth:`forward`.
            Otherwise, a list[Instances] containing raw network outputs.
        """
        assert not self.training

        images = self.preprocess_image(batched_inputs)
        # features = self.backbone(images.tensor)
        input = self.get_batch(batched_inputs, images)
        features = self.backbone(input)

        if detected_instances is None:
            if self.proposal_generator is not None:
                proposals, _ = self.proposal_generator(images, features, None)
            else:
                assert "proposals" in batched_inputs[0]
                proposals = [x["proposals"].to(self.device) for x in batched_inputs]

            results, _ = self.roi_heads(images, features, proposals, None)
        else:
            detected_instances = [x.to(self.device) for x in detected_instances]
            results = self.roi_heads.forward_with_given_boxes(features, detected_instances)

        if do_postprocess:
            assert not torch.jit.is_scripting(), "Scripting is not supported for postprocess."
            return GeneralizedRCNN._postprocess(results, batched_inputs, images.image_sizes)
        else:
            return results

    def get_batch(self, examples, images):
        if len(examples) >= 1 and "bbox" not in examples[0]:  # image_only
            return {"images": images.tensor}

        return input

    def _batch_inference(self, batched_inputs, detected_instances=None):
        """
        Execute inference on a list of inputs,
        using batch size = self.batch_size (e.g., 2), instead of the length of the list.

        Inputs & outputs have the same format as :meth:`GeneralizedRCNN.inference`
        """
        if detected_instances is None:
            detected_instances = [None] * len(batched_inputs)

        outputs = []
        inputs, instances = [], []
        for idx, input, instance in zip(count(), batched_inputs, detected_instances):
            inputs.append(input)
            instances.append(instance)
            if len(inputs) == 2 or idx == len(batched_inputs) - 1:
                outputs.extend(
                    self.inference(
                        inputs,
                        instances if instances[0] is not None else None,
                        do_postprocess=True,  # False
                    )
                )
                inputs, instances = [], []
        return outputs