Spaces:
Sleeping
Sleeping
File size: 14,899 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
from detectron2.checkpoint import DetectionCheckpointer
from typing import Any
import torch
import torch.nn as nn
from fvcore.common.checkpoint import _IncompatibleKeys, _strip_prefix_if_present, TORCH_VERSION, quantization, \
ObserverBase, FakeQuantizeBase
from torch import distributed as dist
from scipy import interpolate
import numpy as np
import torch.nn.functional as F
from collections import OrderedDict
def append_prefix(k):
prefix = 'backbone.bottom_up.backbone.'
return prefix + k if not k.startswith(prefix) else k
def modify_ckpt_state(model, state_dict, logger=None):
# reshape absolute position embedding for Swin
if state_dict.get(append_prefix('absolute_pos_embed')) is not None:
absolute_pos_embed = state_dict[append_prefix('absolute_pos_embed')]
N1, L, C1 = absolute_pos_embed.size()
N2, C2, H, W = model.backbone.bottom_up.backbone.absolute_pos_embed.size()
if N1 != N2 or C1 != C2 or L != H * W:
logger.warning("Error in loading absolute_pos_embed, pass")
else:
state_dict[append_prefix('absolute_pos_embed')] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2)
def get_dist_info():
if dist.is_available() and dist.is_initialized():
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
return rank, world_size
def resize_position_embeddings(max_position_embeddings, old_vocab_size,
_k='backbone.bottom_up.backbone.embeddings.position_embeddings.weight',
initializer_range=0.02, reuse_position_embedding=True):
'''
Reference: unilm
ALso see discussions:
https://github.com/pytorch/fairseq/issues/1685
https://github.com/google-research/bert/issues/27
'''
new_position_embedding = state_dict[_k].data.new_tensor(torch.ones(
size=(max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True)
new_position_embedding.data.normal_(mean=0.0, std=initializer_range)
if max_position_embeddings > old_vocab_size:
logger.info("Resize > position embeddings !")
max_range = max_position_embeddings if reuse_position_embedding else old_vocab_size
shift = 0
while shift < max_range:
delta = min(old_vocab_size, max_range - shift)
new_position_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :]
logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta))
shift += delta
state_dict[_k] = new_position_embedding.data
del new_position_embedding
elif max_position_embeddings < old_vocab_size:
logger.info("Resize < position embeddings !")
new_position_embedding.data.copy_(state_dict[_k][:max_position_embeddings, :])
state_dict[_k] = new_position_embedding.data
del new_position_embedding
rank, _ = get_dist_info()
all_keys = list(state_dict.keys())
for key in all_keys:
if "embeddings.position_embeddings.weight" in key:
if key not in model.state_dict(): # image only models do not use this key
continue
max_position_embeddings = model.state_dict()[key].shape[0]
old_vocab_size = state_dict[key].shape[0]
if max_position_embeddings != old_vocab_size:
resize_position_embeddings(max_position_embeddings, old_vocab_size,_k=key)
if "relative_position_index" in key:
state_dict.pop(key)
if "relative_position_bias_table" in key:
rel_pos_bias = state_dict[key]
src_num_pos, num_attn_heads = rel_pos_bias.size()
if key not in model.state_dict():
continue
dst_num_pos, _ = model.state_dict()[key].size()
dst_patch_shape = model.backbone.bottom_up.backbone.patch_embed.patch_shape
if dst_patch_shape[0] != dst_patch_shape[1]:
raise NotImplementedError()
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
if src_size != dst_size:
if rank == 0:
print("Position interpolate for %s from %dx%d to %dx%d" % (
key, src_size, src_size, dst_size, dst_size))
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
def geometric_progression(a, r, n):
return a * (1.0 - r ** n) / (1.0 - r)
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
# if q > 1.13492:
# q = 1.13492
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q ** (i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
if rank == 0:
print("x = {}".format(x))
print("dx = {}".format(dx))
all_rel_pos_bias = []
for i in range(num_attn_heads):
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
f = interpolate.interp2d(x, y, z, kind='cubic')
all_rel_pos_bias.append(
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
state_dict[key] = new_rel_pos_bias
if append_prefix('pos_embed') in state_dict:
pos_embed_checkpoint = state_dict[append_prefix('pos_embed')]
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.backbone.bottom_up.backbone.patch_embed.num_patches
num_extra_tokens = model.backbone.bottom_up.backbone.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
# new_size = int(num_patches ** 0.5)
new_size_w = model.backbone.bottom_up.backbone.patch_embed.num_patches_w
new_size_h = model.backbone.bottom_up.backbone.patch_embed.num_patches_h
# class_token and dist_token are kept unchanged
if orig_size != new_size_h or orig_size != new_size_w:
if rank == 0:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size_w, new_size_h))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size_w, new_size_h), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
state_dict[append_prefix('pos_embed')] = new_pos_embed
# interpolate position bias table if needed
relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k]
for table_key in relative_position_bias_table_keys:
table_pretrained = state_dict[table_key]
if table_key not in model.state_dict():
continue
table_current = model.state_dict()[table_key]
L1, nH1 = table_pretrained.size()
L2, nH2 = table_current.size()
if nH1 != nH2:
logger.warning(f"Error in loading {table_key}, pass")
else:
if L1 != L2:
S1 = int(L1 ** 0.5)
S2 = int(L2 ** 0.5)
table_pretrained_resized = F.interpolate(
table_pretrained.permute(1, 0).view(1, nH1, S1, S1),
size=(S2, S2), mode='bicubic')
state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0)
if append_prefix('rel_pos_bias.relative_position_bias_table') in state_dict and \
model.backbone.bottom_up.backbone.use_rel_pos_bias and \
not model.backbone.bottom_up.backbone.use_shared_rel_pos_bias and \
append_prefix('blocks.0.attn.relative_position_bias_table') not in state_dict:
logger.info("[BEIT] Expand the shared relative position embedding to each transformer block. ")
num_layers = model.backbone.bottom_up.backbone.get_num_layers()
rel_pos_bias = state_dict[append_prefix("rel_pos_bias.relative_position_bias_table")]
for i in range(num_layers):
state_dict["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone()
state_dict.pop(append_prefix("rel_pos_bias.relative_position_bias_table"))
return state_dict
class MyDetectionCheckpointer(DetectionCheckpointer):
def _load_model(self, checkpoint: Any) -> _IncompatibleKeys:
"""
Load weights from a checkpoint.
Args:
checkpoint (Any): checkpoint contains the weights.
Returns:
``NamedTuple`` with ``missing_keys``, ``unexpected_keys``,
and ``incorrect_shapes`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
* **incorrect_shapes** is a list of (key, shape in checkpoint, shape in model)
This is just like the return value of
:func:`torch.nn.Module.load_state_dict`, but with extra support
for ``incorrect_shapes``.
"""
checkpoint_state_dict = checkpoint.pop("model")
checkpoint_state_dict = self.rename_state_dict(checkpoint_state_dict)
self._convert_ndarray_to_tensor(checkpoint_state_dict)
# if the state_dict comes from a model that was wrapped in a
# DataParallel or DistributedDataParallel during serialization,
# remove the "module" prefix before performing the matching.
_strip_prefix_if_present(checkpoint_state_dict, "module.")
# workaround https://github.com/pytorch/pytorch/issues/24139
model_state_dict = self.model.state_dict()
incorrect_shapes = []
# rename the para in checkpoint_state_dict
# some bug here, do not support re load
if 'backbone.fpn_lateral2.weight' not in checkpoint_state_dict.keys():
checkpoint_state_dict = {
append_prefix(k): checkpoint_state_dict[k]
for k in checkpoint_state_dict.keys()
}
# else: resume a model, do not need append_prefix
checkpoint_state_dict = modify_ckpt_state(self.model, checkpoint_state_dict, logger=self.logger)
for k in list(checkpoint_state_dict.keys()):
if k in model_state_dict:
model_param = model_state_dict[k]
# Allow mismatch for uninitialized parameters
if TORCH_VERSION >= (1, 8) and isinstance(
model_param, nn.parameter.UninitializedParameter
):
continue
shape_model = tuple(model_param.shape)
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
if shape_model != shape_checkpoint:
has_observer_base_classes = (
TORCH_VERSION >= (1, 8)
and hasattr(quantization, "ObserverBase")
and hasattr(quantization, "FakeQuantizeBase")
)
if has_observer_base_classes:
# Handle the special case of quantization per channel observers,
# where buffer shape mismatches are expected.
def _get_module_for_key(
model: torch.nn.Module, key: str
) -> torch.nn.Module:
# foo.bar.param_or_buffer_name -> [foo, bar]
key_parts = key.split(".")[:-1]
cur_module = model
for key_part in key_parts:
cur_module = getattr(cur_module, key_part)
return cur_module
cls_to_skip = (
ObserverBase,
FakeQuantizeBase,
)
target_module = _get_module_for_key(self.model, k)
if isinstance(target_module, cls_to_skip):
# Do not remove modules with expected shape mismatches
# them from the state_dict loading. They have special logic
# in _load_from_state_dict to handle the mismatches.
continue
incorrect_shapes.append((k, shape_checkpoint, shape_model))
checkpoint_state_dict.pop(k)
incompatible = self.model.load_state_dict(checkpoint_state_dict, strict=False)
return _IncompatibleKeys(
missing_keys=incompatible.missing_keys,
unexpected_keys=incompatible.unexpected_keys,
incorrect_shapes=incorrect_shapes,
)
def rename_state_dict(self, state_dict):
new_state_dict = OrderedDict()
layoutlm = False
for k, v in state_dict.items():
if 'layoutlmv3' in k:
layoutlm = True
new_state_dict[k.replace('layoutlmv3.', '')] = v
if layoutlm:
return new_state_dict
return state_dict
|