File size: 10,562 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# LayoutLM
**Multimodal (text + layout/format + image) pre-training for document AI**

- April 17th, 2021: [LayoutXLM](https://arxiv.org/abs/2104.08836) extends the LayoutLM/LayoutLMv2 into multilingual support! In addition, we also introduce XFUN, a multilingual form understanding benchmark including forms with human labeled key-value pairs in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese).
- December 29th, 2020: [LayoutLMv2](https://arxiv.org/abs/2012.14740) is coming with the new SOTA on a wide varierty of document AI tasks, including [DocVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1) and [SROIE](https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3) leaderboard.


## Introduction

LayoutLM is a simple but effective multi-modal pre-training method of text, layout and image for visually-rich document understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: 

[LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers)

[LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, [ACL 2021](#)

[LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei, [Preprint](#)

## Release Notes
**\*\*\*\*\* New Aug 7th, 2020: Our new document understanding datasets, [TableBank](https://doc-analysis.github.io/tablebank-page/) (LREC 2020) and [DocBank](https://doc-analysis.github.io/docbank-page/) (COLING 2020), are now publicly available.\*\*\*\*\***

**\*\*\*\*\* New May 16th, 2020: Our LayoutLM paper has been accepted to KDD 2020 as a full paper in the research track\*\*\*\*\***

**\*\*\*\*\* New Feb 18th, 2020: Initial release of pre-trained models and fine-tuning code for LayoutLM v1 \*\*\*\*\***

## Pre-trained Model

We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset with two settings. 

* LayoutLM-Base, Uncased (11M documents, 2 epochs): 12-layer, 768-hidden, 12-heads, 113M parameters || [OneDrive](https://1drv.ms/u/s!ApPZx_TWwibInS3JD3sZlPpQVZ2b?e=bbTfmM) | [Google Drive](https://drive.google.com/open?id=1Htp3vq8y2VRoTAwpHbwKM0lzZ2ByB8xM)
* LayoutLM-Large, Uncased (11M documents, 2 epochs): 24-layer, 1024-hidden, 16-heads, 343M parameters || [OneDrive](https://1drv.ms/u/s!ApPZx_TWwibInSy2nj7YabBsTWNa?e=p4LQo1) | [Google Drive](https://drive.google.com/open?id=1tatUuWVuNUxsP02smZCbB5NspyGo7g2g)

\*As some downstream datasets are the subsets of IIT-CDIP, we have carefully excluded the overlap portion from the pre-training data.

## Fine-tuning Example

We evaluate LayoutLM on several document image understanding datasets, and it outperforms several SOTA pre-trained models and approaches.

Setup environment as follows:

~~~bash
conda create -n layoutlm python=3.6
conda activate layoutlm
conda install pytorch==1.4.0 cudatoolkit=10.1 -c pytorch
git clone https://github.com/NVIDIA/apex && cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
pip install .
## For development mode
# pip install -e ".[dev]"
~~~

### Sequence Labeling Task


We give a fine-tuning example for sequence labeling tasks. You can run this example on [FUNSD](https://guillaumejaume.github.io/FUNSD/), a dataset for document understanding tasks.

First, we need to preprocess the JSON file into txt. You can run the preprocessing scripts `funsd_preprocess.py` in the `scripts` directory. For more options, please refer to the arguments.

~~~bash
cd examples/seq_labeling
./preprocess.sh
~~~

After preprocessing, run LayoutLM as follows:

~~~bash
python run_seq_labeling.py  --data_dir data \
                            --model_type layoutlm \
                            --model_name_or_path path/to/pretrained/model/directory \
                            --do_lower_case \
                            --max_seq_length 512 \
                            --do_train \
                            --num_train_epochs 100.0 \
                            --logging_steps 10 \
                            --save_steps -1 \
                            --output_dir path/to/output/directory \
                            --labels data/labels.txt \
                            --per_gpu_train_batch_size 16 \
                            --per_gpu_eval_batch_size 16 \
                            --fp16
~~~

Note: The `DataParallel` will be enabled automatically to utilize all GPUs. If you want to train with `DistributedDataParallel`, please run the script like:

~~~bash
# Suppose you have 4 GPUs. 

python -m torch.distributed.launch --nproc_per_node=4 run_seq_labeling.py  --data_dir data \
                            --model_type layoutlm \
                            --model_name_or_path path/to/pretrained/model/directory \
                            --do_lower_case \
                            --max_seq_length 512 \
                            --do_train \
                            --num_train_epochs 100.0 \
                            --logging_steps 10 \
                            --save_steps -1 \
                            --output_dir path/to/output/directory \
                            --labels data/labels.txt \
                            --per_gpu_train_batch_size 16 \
                            --per_gpu_eval_batch_size 16 \
                            --fp16
~~~



Then you can do evaluation or inference by replacing `--do_train` with `--do_eval` or `--do_predict`

Also, you can run Bert and RoBERTa baseline by modifying the `--model_type` argument. For more options, please refer to the arguments of `run.py`.

### Document Image Classification Task

We also fine-tune LayoutLM on the document image classification task. You can download the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset from [here](https://www.cs.cmu.edu/~aharley/rvl-cdip/). Because this dataset only provides the document image, you should use the OCR tool to get the texts and bounding boxes. For example, you can easily use Tesseract, an open-source OCR engine, to generate corresponding OCR data in hOCR format. For more details, please refer to the [Tesseract wiki](https://github.com/tesseract-ocr/tesseract/wiki). Your processed data should look like [this sample data](https://1drv.ms/u/s!ApPZx_TWwibInTlBa5q3tQ7QUdH_?e=UZLVFw). 

With the processed OCR data, you can run LayoutLM as follows:

~~~bash
python run_classification.py  --data_dir  data \
                              --model_type layoutlm \
                              --model_name_or_path path/to/pretrained/model/directory \
                              --output_dir path/to/output/directory \
                              --do_lower_case \
                              --max_seq_length 512 \
                              --do_train \
                              --do_eval \
                              --num_train_epochs 40.0 \
                              --logging_steps 5000 \
                              --save_steps 5000 \
                              --per_gpu_train_batch_size 16 \
                              --per_gpu_eval_batch_size 16 \
                              --evaluate_during_training \
                              --fp16 
~~~

Similarly, you can do evaluation by changing `--do_train` to `--do_eval` and `--do_test`

Like the sequence labeling task, you can run Bert and RoBERTa baseline by modifying the `--model_type` argument.

### Results

#### SROIE (field-level)


| Model                                                        | Hmean      |
| ------------------------------------------------------------ | ---------- |
| BERT-Large                                                   | 90.99%     |
| RoBERTa-Large                                                | 92.80%     |
| [Ranking 1st in SROIE](https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3) | 94.02%     |
| [**LayoutLM**](https://rrc.cvc.uab.es/?ch=13&com=evaluation&view=method_info&task=3&m=71448) | **96.04%** |

#### RVL-CDIP

| Model                                                        | Accuracy   |
| ------------------------------------------------------------ | ---------- |
| BERT-Large                                                   | 89.92%     |
| RoBERTa-Large                                                | 90.11%     |
| [VGG-16 (Afzal et al., 2017)](https://arxiv.org/abs/1704.03557) | 90.97%     |
| [Stacked CNN Ensemble (Das et al., 2018)](https://arxiv.org/abs/1801.09321) | 92.21%     |
| [LadderNet (Sarkhel & Nandi, 2019)](https://www.ijcai.org/Proceedings/2019/0466.pdf) | 92.77%     |
| [Multimodal Ensemble (Dauphinee et al., 2019)](https://arxiv.org/abs/1912.04376) | 93.07%     |
| **LayoutLM**                                                 | **94.42%** |

#### FUNSD (field-level)

| Model         | Precision  | Recall     | F1         |
| ------------- | ---------- | ---------- | ---------- |
| BERT-Large    | 0.6113     | 0.7085     | 0.6563     |
| RoBERTa-Large | 0.6780     | 0.7391     | 0.7072     |
| **LayoutLM**  | **0.7677** | **0.8195** | **0.7927** |

## Citation

If you find LayoutLM useful in your research, please cite the following paper:

``` latex
@misc{xu2019layoutlm,
    title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
    author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou},
    year={2019},
    eprint={1912.13318},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.
Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project.
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)

### Contact Information

For help or issues using LayoutLM, please submit a GitHub issue.

For other communications related to LayoutLM, please contact Lei Cui (`[email protected]`), Furu Wei (`[email protected]`).