Spaces:
Sleeping
Sleeping
File size: 13,634 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import collections
import math
import random
import numpy as np
import torch
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
from fairseq.data import iterators
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
def main(args, init_distributed=False):
utils.import_user_module(args)
assert args.max_tokens is not None or args.max_sentences is not None, \
'Must specify batch size either with --max-tokens or --max-sentences'
# Initialize CUDA and distributed training
if torch.cuda.is_available() and not args.cpu:
torch.cuda.set_device(args.device_id)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if init_distributed:
args.distributed_rank = distributed_utils.distributed_init(args)
if distributed_utils.is_master(args):
checkpoint_utils.verify_checkpoint_directory(args.save_dir)
# Print args
print(args)
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(args)
# Load valid dataset (we load training data below, based on the latest checkpoint)
for valid_sub_split in args.valid_subset.split(','):
task.load_dataset(valid_sub_split, combine=False, epoch=0)
# Build model and criterion
model = task.build_model(args)
criterion = task.build_criterion(args)
print(model)
print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
print('| num. model params: {} (num. trained: {})'.format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
))
# Build trainer
trainer = Trainer(args, task, model, criterion)
print('| training on {} GPUs'.format(args.distributed_world_size))
print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
args.max_tokens,
args.max_sentences,
))
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
# Prepare train
task.prepare_train(model, criterion)
# Train until the learning rate gets too small
max_epoch = args.max_epoch or math.inf
max_update = args.max_update or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
valid_subsets = args.valid_subset.split(',')
while (
lr > args.min_lr
and (epoch_itr.epoch < max_epoch or (epoch_itr.epoch == max_epoch
and epoch_itr._next_epoch_itr is not None))
and trainer.get_num_updates() < max_update
):
# train for one epoch
train(args, trainer, task, epoch_itr)
if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
else:
valid_losses = [None]
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
# save checkpoint
if epoch_itr.epoch % args.save_interval == 0:
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
reload_dataset = ':' in getattr(args, 'data', '')
reload_dataset = reload_dataset or args.reload_dataset_per_epoch
# sharded data: get train iterator for next epoch
epoch_itr = trainer.get_train_iterator(epoch_itr.epoch, load_dataset=reload_dataset)
train_meter.stop()
print('| done training in {:.1f} seconds'.format(train_meter.sum))
def train(args, trainer, task, epoch_itr):
"""Train the model for one epoch."""
# Update parameters every N batches
print("| Start train.train ..." , flush=True)
update_freq = args.update_freq[epoch_itr.epoch - 1] \
if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=args.fix_batches_to_gpus,
shuffle=(epoch_itr.epoch >= args.curriculum),
)
print("| Itr init (1) ...", flush=True)
itr = iterators.GroupedIterator(itr, update_freq)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch, no_progress_bar='simple',
)
print("| Itr init (2) ...", flush=True)
extra_meters = collections.defaultdict(lambda: AverageMeter())
valid_subsets = args.valid_subset.split(',')
max_update = args.max_update or math.inf
# ##################### DEBUG #####################
# debug_samples = []
# print("Fetch debug examples ...")
# for i in range(1000):
# debug_samples.append(next(itr))
# progress = progress_bar.build_progress_bar(
# args, iter(debug_samples), epoch_itr.epoch, no_progress_bar='simple',
# )
# ##################### DEBUG #####################
for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
log_output = trainer.train_step(samples)
if log_output is None:
continue
# log mid-epoch stats
stats = get_training_stats(trainer)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue # these are already logged above
if 'loss' in k or k == 'accuracy':
extra_meters[k].update(v, log_output['sample_size'])
else:
extra_meters[k].update(v)
stats[k] = extra_meters[k].val
progress.log(stats, tag='train', step=stats['num_updates'])
# ignore the first mini-batch in words-per-second and updates-per-second calculation
if i == 0:
trainer.get_meter('wps').reset()
trainer.get_meter('ups').reset()
num_updates = trainer.get_num_updates()
if (
not args.disable_validation
and args.save_interval_updates > 0
and num_updates % args.save_interval_updates == 0
and num_updates > 0
):
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
elif (args.save_interval_updates > 0
and num_updates % args.save_interval_updates == 0
and num_updates > 0):
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, None)
if num_updates >= max_update:
break
# log end-of-epoch stats
stats = get_training_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.val
progress.print(stats, tag='train', step=stats['num_updates'])
# reset training meters
for k in [
'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
]:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
def get_training_stats(trainer):
stats = collections.OrderedDict()
stats['loss'] = trainer.get_meter('train_loss')
if trainer.get_meter('train_nll_loss').count > 0:
nll_loss = trainer.get_meter('train_nll_loss')
stats['nll_loss'] = nll_loss
else:
nll_loss = trainer.get_meter('train_loss')
stats['ppl'] = utils.get_perplexity(nll_loss.avg)
stats['wps'] = trainer.get_meter('wps')
stats['ups'] = trainer.get_meter('ups')
stats['wpb'] = trainer.get_meter('wpb')
stats['bsz'] = trainer.get_meter('bsz')
stats['num_updates'] = trainer.get_num_updates()
stats['lr'] = trainer.get_lr()
stats['gnorm'] = trainer.get_meter('gnorm')
stats['clip'] = trainer.get_meter('clip')
stats['oom'] = trainer.get_meter('oom')
if trainer.get_meter('loss_scale') is not None:
stats['loss_scale'] = trainer.get_meter('loss_scale')
stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
stats['train_wall'] = trainer.get_meter('train_wall')
return stats
def validate(args, trainer, task, epoch_itr, subsets):
"""Evaluate the model on the validation set(s) and return the losses."""
if args.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(args.fixed_validation_seed)
valid_losses = []
for subset in subsets:
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens_valid,
max_sentences=args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
task.max_positions(),
trainer.get_model().max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
prefix='valid on \'{}\' subset'.format(subset),
no_progress_bar='simple'
)
# reset validation loss meters
for k in ['valid_loss', 'valid_nll_loss']:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
extra_meters = collections.defaultdict(lambda: AverageMeter())
for sample in progress:
log_output = trainer.valid_step(sample)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue
extra_meters[k].update(v)
# log validation stats
stats = get_valid_stats(trainer, args, extra_meters)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(
stats[args.best_checkpoint_metric].avg
if args.best_checkpoint_metric == 'loss'
else stats[args.best_checkpoint_metric]
)
return valid_losses
def get_valid_stats(trainer, args, extra_meters=None):
stats = collections.OrderedDict()
stats['loss'] = trainer.get_meter('valid_loss')
if trainer.get_meter('valid_nll_loss').count > 0:
nll_loss = trainer.get_meter('valid_nll_loss')
stats['nll_loss'] = nll_loss
else:
nll_loss = stats['loss']
stats['ppl'] = utils.get_perplexity(nll_loss.avg)
stats['num_updates'] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, 'best'):
key = 'best_{0}'.format(args.best_checkpoint_metric)
best_function = max if args.maximize_best_checkpoint_metric else min
current_metric = None
if args.best_checkpoint_metric == 'loss':
current_metric = stats['loss'].avg
elif args.best_checkpoint_metric in extra_meters:
current_metric = extra_meters[args.best_checkpoint_metric].avg
elif args.best_checkpoint_metric in stats:
current_metric = stats[args.best_checkpoint_metric]
else:
raise ValueError("best_checkpoint_metric not found in logs")
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
current_metric,
)
return stats
def distributed_main(i, args, start_rank=0):
args.device_id = i
if args.distributed_rank is None: # torch.multiprocessing.spawn
args.distributed_rank = start_rank + i
main(args, init_distributed=True)
def cli_main():
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser)
if args.distributed_init_method is None:
distributed_utils.infer_init_method(args)
if args.distributed_init_method is not None:
# distributed training
if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
start_rank = args.distributed_rank
args.distributed_rank = None # assign automatically
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, start_rank),
nprocs=torch.cuda.device_count(),
)
else:
distributed_main(args.device_id, args)
elif args.distributed_world_size > 1:
# fallback for single node with multiple GPUs
assert args.distributed_world_size <= torch.cuda.device_count()
port = random.randint(10000, 20000)
args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
args.distributed_rank = None # set based on device id
if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, ),
nprocs=args.distributed_world_size,
)
else:
# single GPU training
main(args)
if __name__ == '__main__':
cli_main()
|