File size: 2,274 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# --------------------------------------------------------------------------------
# MPViT: Multi-Path Vision Transformer for Dense Prediction
# Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI).
# All Rights Reserved.
# Written by Youngwan Lee
# --------------------------------------------------------------------------------

"""
Detection Training Script for MPViT.
"""
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.data.datasets import register_coco_instances

from ditod import MyTrainer, add_vit_config

def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    # add_coat_config(cfg)
    add_vit_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    register_coco_instances(
        "funsd_train",
        {},
        "data/instances_training.json",
        "data/imgs"
    )

    register_coco_instances(
        "funsd_test",
        {},
        "data/instances_test.json",
        "data/imgs"
    )

    cfg = setup(args)

    if args.eval_only:
        model = MyTrainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = MyTrainer.test(cfg, model)
        return res

    trainer = MyTrainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()


if __name__ == "__main__":
    parser = default_argument_parser()
    parser.add_argument("--debug", action="store_true", help="enable debug mode")
    args = parser.parse_args()
    print("Command Line Args:", args)

    if args.debug:
        import debugpy

        print("Enabling attach starts.")
        debugpy.listen(address=('0.0.0.0', 9310))
        debugpy.wait_for_client()
        print("Enabling attach ends.")

    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )