Spaces:
Sleeping
Sleeping
File size: 2,661 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# DiT for Text Detection
<div align="center">
<img src="https://user-images.githubusercontent.com/45008728/163219997-90d15c1b-e1d1-4bb3-ae46-774e54b89dc6.png" width="500" /><img src="https://user-images.githubusercontent.com/45008728/163220437-ab6a3fd2-0a4f-49c5-810c-e05dda7eb9e1.png" width="500"/> Model outputs with FUNSD
</div>
## Fine-tuned models on FUNSD
We summarize the validation results as follows. We also provide the fine-tuned weights.
| name | initialized checkpoint | detection algorithm | F1 | weight |
|------------|:----------------------------------------|:----------:|-------------------|-----|
| DiT-base-syn | [dit_base_patch16_224_syn](https://layoutlm.blob.core.windows.net/dit/dit-fts/td-syn_dit-b_mrcnn.pth) | Mask R-CNN | 94.25 | [link](https://layoutlm.blob.core.windows.net/dit/dit-fts/funsd_dit-b_mrcnn.pth) |
| DiT-large-syn | [dit_large_patch16_224_syn](https://layoutlm.blob.core.windows.net/dit/dit-fts/td-syn_dit-l_mrcnn.pth) | Mask R-CNN | 94.29 | [link](https://layoutlm.blob.core.windows.net/dit/dit-fts/funsd_dit-l_mrcnn.pth) |
## Usage
### Data Preparation
Follow [these steps](https://mmocr.readthedocs.io/en/latest/datasets/det.html#funsd) to download and process the FUNSD. The resulting directory structure looks like the following:
```
βββ data
β βββ annotations
β βββ imgs
β βββ instances_test.json
β βββ instances_training.json
```
### Training
The following command provide example to train the Mask R-CNN with DiT backbone on 8 32GB Nvidia V100 GPUs.
The config files can be found in `configs`.
```bash
python train_net.py --config-file configs/mask_rcnn_dit_base.yaml --num-gpus 8 --resume MODEL.WEIGHTS path/to/model OUTPUT_DIR path/to/output
```
### Evaluation
The following commands provide examples to evaluate the fine-tuned checkpoint of DiT-Base with Mask R-CNN.
```bash
python train_net.py --config-file configs/mask_rcnn_dit_base.yaml --eval-only --num-gpus 8 --resume MODEL.WEIGHTS path/to/model OUTPUT_DIR path/to/output
```
## Citation
If you find this repository useful, please consider citing our work:
```
@misc{li2022dit,
title={DiT: Self-supervised Pre-training for Document Image Transformer},
author={Junlong Li and Yiheng Xu and Tengchao Lv and Lei Cui and Cha Zhang and Furu Wei},
year={2022},
eprint={2203.02378},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Acknowledgment
Thanks to [Detectron2](https://github.com/facebookresearch/detectron2) for Mask R-CNN implementation and [MMOCR](https://github.com/open-mmlab/mmocr) for the data preprocessing implementation of the FUNSD
|