File size: 5,460 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# --------------------------------------------------------'
import math
import random
import warnings

import torchvision.transforms.functional as F
from timm.data.transforms import interp_mode_to_str, _RANDOM_INTERPOLATION, str_to_interp_mode


class RandomResizedCropAndInterpolationWithTwoPic:
    """Crop the given PIL Image to random size and aspect ratio with random interpolation.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
        interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.),
                 interpolation='bilinear', second_interpolation='lanczos'):
        if isinstance(size, tuple):
            self.size = size
        else:
            self.size = (size, size)
        if second_size is not None:
            if isinstance(second_size, tuple):
                self.second_size = second_size
            else:
                self.second_size = (second_size, second_size)
        else:
            self.second_size = None
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

        if interpolation == 'random':
            self.interpolation = _RANDOM_INTERPOLATION
        else:
            self.interpolation = str_to_interp_mode(interpolation)
        self.second_interpolation = str_to_interp_mode(second_interpolation)
        self.scale = scale
        self.ratio = ratio

    @staticmethod
    def get_params(img, scale, ratio):
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        area = img.size[0] * img.size[1]

        for attempt in range(10):
            target_area = random.uniform(*scale) * area
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if in_ratio < min(ratio):
            w = img.size[0]
            h = int(round(w / min(ratio)))
        elif in_ratio > max(ratio):
            h = img.size[1]
            w = int(round(h * max(ratio)))
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
        j = (img.size[0] - w) // 2
        return i, j, h, w

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped and resized.

        Returns:
            PIL Image: Randomly cropped and resized image.
        """
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
        if isinstance(self.interpolation, (tuple, list)):
            interpolation = random.choice(self.interpolation)
        else:
            interpolation = self.interpolation
        if self.second_size is None:
            return F.resized_crop(img, i, j, h, w, self.size, interpolation)
        else:
            return F.resized_crop(img, i, j, h, w, self.size, interpolation), \
                   F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation)

    def __repr__(self):
        if isinstance(self.interpolation, (tuple, list)):
            interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation])
        else:
            interpolate_str = interp_mode_to_str(self.interpolation)
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
        format_string += ', interpolation={0}'.format(interpolate_str)
        if self.second_size is not None:
            format_string += ', second_size={0}'.format(self.second_size)
            format_string += ', second_interpolation={0}'.format(interp_mode_to_str(self.second_interpolation))
        format_string += ')'
        return format_string