File size: 3,423 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm, DINO and DeiT code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
from timm.data import create_transform
from timm.data.constants import \
    IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import str_to_interp_mode
from torchvision import transforms

from dataset_folder import RvlcdipImageFolder


def build_dataset(is_train, args):
    transform = build_transform(is_train, args)

    print("Transform = ")
    if isinstance(transform, tuple):
        for trans in transform:
            print(" - - - - - - - - - - ")
            for t in trans.transforms:
                print(t)
    else:
        for t in transform.transforms:
            print(t)
    print("---------------------------")

    if args.data_set == 'rvlcdip':
        root = args.data_path if is_train else args.eval_data_path
        split = "train" if is_train else "test"
        dataset = RvlcdipImageFolder(root, split=split, transform=transform)
        nb_classes = args.nb_classes
        assert len(dataset.class_to_idx) == nb_classes
    else:
        raise NotImplementedError()
    assert nb_classes == args.nb_classes
    print("Number of the class = %d" % args.nb_classes)

    return dataset, nb_classes


def build_transform(is_train, args):
    resize_im = args.input_size > 32
    imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
    mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
    std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD

    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=args.input_size,
            is_training=True,
            color_jitter=args.color_jitter,
            auto_augment=args.aa,
            interpolation=args.train_interpolation,
            re_prob=args.reprob,
            re_mode=args.remode,
            re_count=args.recount,
            mean=mean,
            std=std,
        )
        if not resize_im:
            # replace RandomResizedCropAndInterpolation with
            # RandomCrop
            transform.transforms[0] = transforms.RandomCrop(
                args.input_size, padding=4)
        return transform

    t = []
    if resize_im:
        if args.crop_pct is None:
            if args.input_size < 384:
                args.crop_pct = 224 / 256
            else:
                args.crop_pct = 1.0
        size = int(args.input_size / args.crop_pct)
        t.append(
            transforms.Resize(size, interpolation=str_to_interp_mode("bicubic")),
            # to maintain same ratio w.r.t. 224 images
        )
        t.append(transforms.CenterCrop(args.input_size))

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(mean, std))
    return transforms.Compose(t)