File size: 10,118 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import os
import sys
import torch

from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any
from omegaconf import MISSING

from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset, encoders
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig

from . import FairseqTask, register_task
from .. import utils
from ..logging import metrics


class LabelEncoder(object):
    def __init__(self, dictionary):
        self.dictionary = dictionary

    def __call__(self, label):
        return self.dictionary.encode_line(
            label, append_eos=False, add_if_not_exist=False
        )


@dataclass
class AudioPretrainingConfig(FairseqDataclass):
    data: str = field(default=MISSING, metadata={"help": "path to data directory"})
    labels: Optional[str] = field(
        default=None,
        metadata={"help": "extension of the label file to load, used for fine-tuning"},
    )
    sample_rate: int = field(
        default=16_000,
        metadata={
            "help": "target sample rate. audio files will be up/down sampled to this rate"
        },
    )
    normalize: bool = field(
        default=False,
        metadata={"help": "if set, normalizes input to have 0 mean and unit variance"},
    )
    enable_padding: bool = field(
        default=False, metadata={"help": "pad shorter samples instead of cropping"}
    )
    max_sample_size: Optional[int] = field(
        default=None, metadata={"help": "max sample size to crop to for batching"}
    )
    min_sample_size: Optional[int] = field(
        default=None, metadata={"help": "min sample size to skip small examples"}
    )

    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={"help": "beam search config for evaluating wer during training"},
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={"help": "tokenizer config for evaluating wer during training"},
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help": "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )


@register_task("audio_pretraining", dataclass=AudioPretrainingConfig)
class AudioPretrainingTask(FairseqTask):
    """"""

    cfg: AudioPretrainingConfig

    def __init__(
        self,
        cfg: AudioPretrainingConfig,
    ):
        super().__init__(cfg)
        if cfg.eval_wer:
            assert cfg.labels is not None, "eval_wer can only be set during fine-tuning"
        self.blank_symbol = "<s>"

        self.state.add_factory("target_dictionary", self.load_target_dictionary)

    @classmethod
    def setup_task(cls, cfg: AudioPretrainingConfig, **kwargs):
        """Setup the task (e.g., load dictionaries).

        Args:
            cfg (AudioPretrainingConfig): configuration of this task
        """

        return cls(cfg)

    def load_target_dictionary(self):
        if self.cfg.labels:
            dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt")
            return Dictionary.load(dict_path)
        return None

    def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs):
        data_path = self.cfg.data
        task_cfg = task_cfg or self.cfg

        # upgrade old task
        if isinstance(task_cfg, Namespace):
            if not hasattr(task_cfg, "autoregressive"):
                task_cfg.autoregressive = not task_cfg.criterion == 'ctc'

        manifest = os.path.join(data_path, "{}.tsv".format(split))
        self.datasets[split] = FileAudioDataset(
            manifest,
            sample_rate=task_cfg.get('sample_rate', self.cfg.sample_rate),
            max_sample_size=self.cfg.max_sample_size,
            min_sample_size=self.cfg.min_sample_size,
            pad=task_cfg.labels is not None or task_cfg.enable_padding,
            normalize=task_cfg.normalize,
        )

        if task_cfg.labels:
            label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
            with open(label_path, "r") as f:
                labels = [
                    line for i, line in enumerate(f)
                    if i in self.datasets[split].line_inds
                ]

            assert len(labels) == len(self.datasets[split]), (
                    f"labels length ({len(labels)}) and dataset length "
                    f"({len(self.datasets[split])}) do not match")

            process_label = LabelEncoder(self.target_dictionary)

            self.datasets[split] = AddTargetDataset(
                self.datasets[split],
                labels,
                pad=self.target_dictionary.pad(),
                eos=self.target_dictionary.eos(),
                batch_targets=True,
                process_label=process_label,
                add_to_input=task_cfg.get('autoregressive', False),
            )

    @property
    def source_dictionary(self):
        return None

    @property
    def target_dictionary(self):
        """Return the :class:`~fairseq.data.Dictionary` for the language
        model."""
        return self.state.target_dictionary

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return (sys.maxsize, sys.maxsize)

    def filter_indices_by_size(
        self,
        indices,
        dataset,
        max_positions=None,
        ignore_invalid_inputs=False,
    ):
        # we do not need to filter by size in this task as dataloaders take care of this
        return indices

    def valid_step(self, sample, model, criterion):
        loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
        if self.cfg.eval_wer and self.cfg.autoregressive:
            metrics = self._inference_with_wer(self.sequence_generator, sample, model)
            logging_output["_num_char_errors"] = metrics["num_char_errors"]
            logging_output["_num_chars"] = metrics["num_chars"]
            logging_output["_num_word_errors"] = metrics["num_word_errors"]
            logging_output["_num_words"] = metrics["num_words"]
        return loss, sample_size, logging_output

    def build_model(self, model_cfg: FairseqDataclass):
        model = super().build_model(model_cfg)

        if self.cfg.eval_wer and self.cfg.autoregressive:
            self.sequence_generator = self.build_generator(
                [model],
                self.cfg.eval_wer_config,
            )
            if self.cfg.eval_wer_tokenizer:
                self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
            else:
                self.tokenizer = None
        return model

    def _inference_with_wer(self, generator, sample, model):
        import editdistance

        def decode(toks):
            s = self.target_dictionary.string(
                toks.int().cpu(),
                self.cfg.eval_wer_post_process,
                escape_unk=True,
            )
            if self.tokenizer:
                s = self.tokenizer.decode(s)
            return s

        num_word_errors, num_char_errors = 0, 0
        num_chars, num_words = 0, 0
        gen_out = self.inference_step(generator, [model], sample, None)
        for i in range(len(gen_out)):
            hyp = decode(gen_out[i][0]["tokens"])
            ref = decode(
                utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
            )
            num_char_errors += editdistance.eval(hyp, ref)
            num_chars += len(ref)
            hyp_words = hyp.split()
            ref_words = ref.split()
            num_word_errors += editdistance.eval(hyp_words, ref_words)
            num_words += len(ref_words)

        return {
            "num_char_errors": num_char_errors,
            "num_chars": num_chars,
            "num_word_errors": num_word_errors,
            "num_words": num_words,
        }

    def reduce_metrics(self, logging_outputs, criterion):
        super().reduce_metrics(logging_outputs, criterion)

        zero = torch.scalar_tensor(0.0)
        num_char_errors = sum(
            log.get("_num_char_errors", zero) for log in logging_outputs
        )
        num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
        num_word_errors = sum(
            log.get("_num_word_errors", zero) for log in logging_outputs
        )
        num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
        metrics.log_scalar("_num_char_errors", num_char_errors)
        metrics.log_scalar("_num_chars", num_chars)
        metrics.log_scalar("_num_word_errors", num_word_errors)
        metrics.log_scalar("_num_words", num_words)
        if num_words > 0:
            metrics.log_derived(
                "uer",
                lambda meters: meters["_num_char_errors"].sum
                * 100.0
                / meters["_num_chars"].sum
                if meters["_num_chars"].sum > 0
                else float("nan"),
            )
            metrics.log_derived(
                "wer",
                lambda meters: meters["_num_word_errors"].sum
                * 100.0
                / meters["_num_words"].sum
                if meters["_num_words"].sum > 0
                else float("nan"),
            )