File size: 18,582 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


from dataclasses import dataclass, field
from typing import Optional

from fairseq import options, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
    FairseqLanguageModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder
from omegaconf import II


DEFAULT_MAX_TARGET_POSITIONS = 1024


@dataclass
class TransformerLanguageModelConfig(FairseqDataclass):
    activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
        default="relu", metadata={"help": "activation function to use"}
    )
    dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
    attention_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability for attention weights"}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN."}
    )
    relu_dropout: float = field(
        default=0.0, metadata={"help": "dropout probability after activation in FFN."}
    )
    decoder_embed_dim: int = field(
        default=512, metadata={"help": "decoder embedding dimension"}
    )
    decoder_output_dim: int = field(
        default=512, metadata={"help": "decoder output dimension"}
    )
    decoder_input_dim: int = field(
        default=512, metadata={"help": "decoder input dimension"}
    )
    decoder_ffn_embed_dim: int = field(
        default=2048, metadata={"help": "decoder embedding dimension for FFN"}
    )
    decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
    decoder_attention_heads: int = field(
        default=8, metadata={"help": "num decoder attention heads"}
    )
    decoder_normalize_before: bool = field(
        default=False, metadata={"help": "apply layernorm before each decoder block"}
    )
    no_decoder_final_norm: bool = field(
        default=False,
        metadata={"help": "don't add an extra layernorm after the last decoder block"},
    )
    adaptive_softmax_cutoff: Optional[str] = field(
        default=None,
        metadata={
            "help": "comma separated list of adaptive softmax cutoff points. "
            "Must be used with adaptive_loss criterion"
        },
    )
    adaptive_softmax_dropout: float = field(
        default=0,
        metadata={"help": "sets adaptive softmax dropout for the tail projections"},
    )
    adaptive_softmax_factor: float = field(
        default=4, metadata={"help": "adaptive input factor"}
    )
    no_token_positional_embeddings: bool = field(
        default=False,
        metadata={
            "help": "if set, disables positional embeddings (outside self attention)"
        },
    )
    share_decoder_input_output_embed: bool = field(
        default=False, metadata={"help": "share decoder input and output embeddings"}
    )
    character_embeddings: bool = field(
        default=False,
        metadata={
            "help": "if set, uses character embedding convolutions to produce token embeddings"
        },
    )
    character_filters: str = field(
        default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]",
        metadata={"help": "size of character embeddings"},
    )
    character_embedding_dim: int = field(
        default=4, metadata={"help": "size of character embeddings"}
    )
    char_embedder_highway_layers: int = field(
        default=2,
        metadata={"help": "number of highway layers for character token embeddder"},
    )
    adaptive_input: bool = field(
        default=False, metadata={"help": "if set, uses adaptive input"}
    )
    adaptive_input_factor: float = field(
        default=4, metadata={"help": "adaptive input factor"}
    )
    adaptive_input_cutoff: Optional[str] = field(
        default=None,
        metadata={"help": "comma separated list of adaptive input cutoff points."},
    )
    tie_adaptive_weights: bool = field(
        default=False,
        metadata={
            "help": "if set, ties the weights of adaptive softmax and adaptive input"
        },
    )
    tie_adaptive_proj: bool = field(
        default=False,
        metadata={
            "help": "if set, ties the projection weights of adaptive softmax and adaptive input"
        },
    )
    decoder_learned_pos: bool = field(
        default=False,
        metadata={"help": "use learned positional embeddings in the decoder"},
    )
    decoder_layerdrop: float = field(
        default=0.0, metadata={"help": "LayerDrop probability for decoder"}
    )
    decoder_layers_to_keep: Optional[str] = field(
        default=None,
        metadata={
            "help": "which layers to *keep* when pruning as a comma-separated list"
        },
    )
    layernorm_embedding: bool = field(
        default=False, metadata={"help": "add layernorm to embedding"}
    )
    no_scale_embedding: bool = field(
        default=False, metadata={"help": "if True, dont scale embeddings"}
    )
    checkpoint_activations: bool = field(
        default=False, metadata={"help": "checkpoint activations at each layer"}
    )
    offload_activations: bool = field(
        default=False,
        metadata={"help": "move checkpointed activations to CPU after they are used."},
    )
    quant_noise_pq: float = field(
        default=0.0,
        metadata={"help": "iterative PQ quantization noise at training time"},
    )
    quant_noise_pq_block_size: int = field(
        default=8,
        metadata={"help": "block size of quantization noise at training time"},
    )
    # TODO common var add to parent
    quant_noise_scalar: float = field(
        default=0.0,
        metadata={
            "help": "scalar quantization noise and scalar quantization at training time"
        },
    )
    add_bos_token: bool = II("task.add_bos_token")
    tokens_per_sample: int = II("task.tokens_per_sample")
    max_target_positions: Optional[int] = II("task.max_target_positions")
    tpu: bool = II("common.tpu")


@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
class TransformerLanguageModel(FairseqLanguageModel):
    @classmethod
    def hub_models(cls):
        def moses_fastbpe(path):
            return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"}

        def spm(path):
            return {"path": path, "tokenizer": "space", "bpe": "sentencepiece"}

        return {
            "transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2",
            "transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2",
            "transformer_lm.wmt19.en": moses_fastbpe(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2"
            ),
            "transformer_lm.wmt19.de": moses_fastbpe(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2"
            ),
            "transformer_lm.wmt19.ru": moses_fastbpe(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2"
            ),
            "transformer_lm.wmt20.en": spm(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.en.tar.gz"
            ),
            "transformer_lm.wmt20.ta": spm(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.ta.tar.gz"
            ),
            "transformer_lm.wmt20.iu.news": spm(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.news.tar.gz"
            ),
            "transformer_lm.wmt20.iu.nh": spm(
                "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.nh.tar.gz"
            ),
        }

    def __init__(self, decoder):
        super().__init__(decoder)

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_lm_architecture(args)

        if args.decoder_layers_to_keep:
            args.decoder_layers = len(args.decoder_layers_to_keep.split(","))

        if getattr(args, "max_target_positions", None) is None:
            args.max_target_positions = getattr(
                args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
            )

        if args.character_embeddings:
            embed_tokens = CharacterTokenEmbedder(
                task.source_dictionary,
                eval(args.character_filters),
                args.character_embedding_dim,
                args.decoder_embed_dim,
                args.char_embedder_highway_layers,
            )
        elif args.adaptive_input:
            embed_tokens = AdaptiveInput(
                len(task.source_dictionary),
                task.source_dictionary.pad(),
                args.decoder_input_dim,
                args.adaptive_input_factor,
                args.decoder_embed_dim,
                options.eval_str_list(args.adaptive_input_cutoff, type=int),
                args.quant_noise_pq,
                args.quant_noise_pq_block_size,
            )
        else:
            embed_tokens = cls.build_embedding(
                args, task.source_dictionary, args.decoder_input_dim
            )

        if args.tie_adaptive_weights:
            assert args.adaptive_input
            assert args.adaptive_input_factor == args.adaptive_softmax_factor
            assert (
                args.adaptive_softmax_cutoff == args.adaptive_input_cutoff
            ), "{} != {}".format(
                args.adaptive_softmax_cutoff, args.adaptive_input_cutoff
            )
            assert args.decoder_input_dim == args.decoder_output_dim

        decoder = TransformerDecoder(
            args, task.target_dictionary, embed_tokens, no_encoder_attn=True
        )
        return cls(decoder)

    @classmethod
    def build_embedding(cls, args, dictionary, embed_dim, path=None):
        embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
        return embed_tokens


def base_lm_architecture(args):
    # backward compatibility for older model checkpoints
    if hasattr(args, "no_tie_adaptive_proj"):
        # previous models defined --no-tie-adaptive-proj, so use the existence of
        # that option to determine if this is an "old" model checkpoint
        args.no_decoder_final_norm = True  # old models always set this to True
        if args.no_tie_adaptive_proj is False:
            args.tie_adaptive_proj = True
    if hasattr(args, "decoder_final_norm"):
        args.no_decoder_final_norm = not args.decoder_final_norm

    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)

    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.activation_fn = getattr(args, "activation_fn", "relu")

    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
    args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
    args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)

    args.add_bos_token = getattr(args, "add_bos_token", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.character_embeddings = getattr(args, "character_embeddings", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # Model training is not stable without this
    args.decoder_normalize_before = True
    args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)

    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
    args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)

    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
    args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
    args.offload_activations = getattr(args, "offload_activations", False)
    if args.offload_activations:
        args.checkpoint_activations = True


@register_model_architecture("transformer_lm", "transformer_lm_big")
def transformer_lm_big(args):
    args.decoder_layers = getattr(args, "decoder_layers", 12)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    base_lm_architecture(args)


@register_model_architecture("transformer_lm", "transformer_lm_wiki103")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103")
def transformer_lm_baevski_wiki103(args):
    args.decoder_layers = getattr(args, "decoder_layers", 16)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.dropout = getattr(args, "dropout", 0.3)
    args.adaptive_input = getattr(args, "adaptive_input", True)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", True)
    args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", "20000,60000")
    args.adaptive_softmax_cutoff = getattr(
        args, "adaptive_softmax_cutoff", "20000,60000"
    )
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0.2)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_dropout = getattr(args, "activation_dropout", 0.1)
    args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
    args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", True)
    transformer_lm_big(args)


@register_model_architecture("transformer_lm", "transformer_lm_gbw")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw")
def transformer_lm_baevski_gbw(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
    transformer_lm_big(args)


@register_model_architecture("transformer_lm", "transformer_lm_gpt")
def transformer_lm_gpt(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072)
    args.decoder_layers = getattr(args, "decoder_layers", 12)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    base_lm_architecture(args)


@register_model_architecture("transformer_lm", "transformer_lm_gpt2_small")
def transformer_lm_gpt2_small(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
    args.decoder_layers = getattr(args, "decoder_layers", 24)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    base_lm_architecture(args)


@register_model_architecture("transformer_lm", "transformer_lm_gpt2_tiny")
def transformer_lm_gpt2_tiny(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 64)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 64)
    args.decoder_layers = getattr(args, "decoder_layers", 2)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 1)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    base_lm_architecture(args)


@register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium")
def transformer_lm_gpt2_medium(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1280)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 5120)
    args.decoder_layers = getattr(args, "decoder_layers", 36)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 20)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    base_lm_architecture(args)


@register_model_architecture("transformer_lm", "transformer_lm_gpt2_big")
def transformer_lm_gpt2_big(args):
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1600)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 6400)
    args.decoder_layers = getattr(args, "decoder_layers", 48)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 25)
    args.dropout = getattr(args, "dropout", 0.1)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.activation_fn = getattr(args, "activation_fn", "gelu")
    base_lm_architecture(args)