Spaces:
Sleeping
Sleeping
File size: 18,582 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq import options, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder
from omegaconf import II
DEFAULT_MAX_TARGET_POSITIONS = 1024
@dataclass
class TransformerLanguageModelConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
relu_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
decoder_embed_dim: int = field(
default=512, metadata={"help": "decoder embedding dimension"}
)
decoder_output_dim: int = field(
default=512, metadata={"help": "decoder output dimension"}
)
decoder_input_dim: int = field(
default=512, metadata={"help": "decoder input dimension"}
)
decoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
decoder_attention_heads: int = field(
default=8, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_decoder_final_norm: bool = field(
default=False,
metadata={"help": "don't add an extra layernorm after the last decoder block"},
)
adaptive_softmax_cutoff: Optional[str] = field(
default=None,
metadata={
"help": "comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion"
},
)
adaptive_softmax_dropout: float = field(
default=0,
metadata={"help": "sets adaptive softmax dropout for the tail projections"},
)
adaptive_softmax_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
character_embeddings: bool = field(
default=False,
metadata={
"help": "if set, uses character embedding convolutions to produce token embeddings"
},
)
character_filters: str = field(
default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]",
metadata={"help": "size of character embeddings"},
)
character_embedding_dim: int = field(
default=4, metadata={"help": "size of character embeddings"}
)
char_embedder_highway_layers: int = field(
default=2,
metadata={"help": "number of highway layers for character token embeddder"},
)
adaptive_input: bool = field(
default=False, metadata={"help": "if set, uses adaptive input"}
)
adaptive_input_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
adaptive_input_cutoff: Optional[str] = field(
default=None,
metadata={"help": "comma separated list of adaptive input cutoff points."},
)
tie_adaptive_weights: bool = field(
default=False,
metadata={
"help": "if set, ties the weights of adaptive softmax and adaptive input"
},
)
tie_adaptive_proj: bool = field(
default=False,
metadata={
"help": "if set, ties the projection weights of adaptive softmax and adaptive input"
},
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "LayerDrop probability for decoder"}
)
decoder_layers_to_keep: Optional[str] = field(
default=None,
metadata={
"help": "which layers to *keep* when pruning as a comma-separated list"
},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
offload_activations: bool = field(
default=False,
metadata={"help": "move checkpointed activations to CPU after they are used."},
)
quant_noise_pq: float = field(
default=0.0,
metadata={"help": "iterative PQ quantization noise at training time"},
)
quant_noise_pq_block_size: int = field(
default=8,
metadata={"help": "block size of quantization noise at training time"},
)
# TODO common var add to parent
quant_noise_scalar: float = field(
default=0.0,
metadata={
"help": "scalar quantization noise and scalar quantization at training time"
},
)
add_bos_token: bool = II("task.add_bos_token")
tokens_per_sample: int = II("task.tokens_per_sample")
max_target_positions: Optional[int] = II("task.max_target_positions")
tpu: bool = II("common.tpu")
@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
class TransformerLanguageModel(FairseqLanguageModel):
@classmethod
def hub_models(cls):
def moses_fastbpe(path):
return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"}
def spm(path):
return {"path": path, "tokenizer": "space", "bpe": "sentencepiece"}
return {
"transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2",
"transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2",
"transformer_lm.wmt19.en": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2"
),
"transformer_lm.wmt19.de": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2"
),
"transformer_lm.wmt19.ru": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2"
),
"transformer_lm.wmt20.en": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.en.tar.gz"
),
"transformer_lm.wmt20.ta": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.ta.tar.gz"
),
"transformer_lm.wmt20.iu.news": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.news.tar.gz"
),
"transformer_lm.wmt20.iu.nh": spm(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt20.iu.nh.tar.gz"
),
}
def __init__(self, decoder):
super().__init__(decoder)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_lm_architecture(args)
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
if args.character_embeddings:
embed_tokens = CharacterTokenEmbedder(
task.source_dictionary,
eval(args.character_filters),
args.character_embedding_dim,
args.decoder_embed_dim,
args.char_embedder_highway_layers,
)
elif args.adaptive_input:
embed_tokens = AdaptiveInput(
len(task.source_dictionary),
task.source_dictionary.pad(),
args.decoder_input_dim,
args.adaptive_input_factor,
args.decoder_embed_dim,
options.eval_str_list(args.adaptive_input_cutoff, type=int),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
embed_tokens = cls.build_embedding(
args, task.source_dictionary, args.decoder_input_dim
)
if args.tie_adaptive_weights:
assert args.adaptive_input
assert args.adaptive_input_factor == args.adaptive_softmax_factor
assert (
args.adaptive_softmax_cutoff == args.adaptive_input_cutoff
), "{} != {}".format(
args.adaptive_softmax_cutoff, args.adaptive_input_cutoff
)
assert args.decoder_input_dim == args.decoder_output_dim
decoder = TransformerDecoder(
args, task.target_dictionary, embed_tokens, no_encoder_attn=True
)
return cls(decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
return embed_tokens
def base_lm_architecture(args):
# backward compatibility for older model checkpoints
if hasattr(args, "no_tie_adaptive_proj"):
# previous models defined --no-tie-adaptive-proj, so use the existence of
# that option to determine if this is an "old" model checkpoint
args.no_decoder_final_norm = True # old models always set this to True
if args.no_tie_adaptive_proj is False:
args.tie_adaptive_proj = True
if hasattr(args, "decoder_final_norm"):
args.no_decoder_final_norm = not args.decoder_final_norm
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)
args.add_bos_token = getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.character_embeddings = getattr(args, "character_embeddings", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# Model training is not stable without this
args.decoder_normalize_before = True
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.offload_activations = getattr(args, "offload_activations", False)
if args.offload_activations:
args.checkpoint_activations = True
@register_model_architecture("transformer_lm", "transformer_lm_big")
def transformer_lm_big(args):
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_wiki103")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103")
def transformer_lm_baevski_wiki103(args):
args.decoder_layers = getattr(args, "decoder_layers", 16)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.dropout = getattr(args, "dropout", 0.3)
args.adaptive_input = getattr(args, "adaptive_input", True)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", True)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", "20000,60000")
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "20000,60000"
)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0.2)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gbw")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw")
def transformer_lm_baevski_gbw(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt")
def transformer_lm_gpt(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_small")
def transformer_lm_gpt2_small(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_layers = getattr(args, "decoder_layers", 24)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_tiny")
def transformer_lm_gpt2_tiny(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 64)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 64)
args.decoder_layers = getattr(args, "decoder_layers", 2)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 1)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium")
def transformer_lm_gpt2_medium(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1280)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 5120)
args.decoder_layers = getattr(args, "decoder_layers", 36)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 20)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_big")
def transformer_lm_gpt2_big(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1600)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 6400)
args.decoder_layers = getattr(args, "decoder_layers", 48)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 25)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
|