Spaces:
Sleeping
Sleeping
File size: 12,314 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from math import log
import torch
from fairseq import utils
from fairseq.data import LanguagePairDataset
from fairseq.dataclass import ChoiceEnum
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationConfig, TranslationTask, load_langpair_dataset
from fairseq.utils import new_arange
import logging
from omegaconf import II
import numpy as np
NOISE_CHOICES = ChoiceEnum(["random_delete", "random_mask", "no_noise", "full_mask", "block_mask"])
@dataclass
class TranslationLevenshteinConfig(TranslationConfig):
noise: NOISE_CHOICES = field(
default="random_delete",
metadata={
"help": "type of noise"
},
)
start_p: float = field(
default=0.5, metadata={"help": "minus prob"}
)
minus_p: float = field(
default=0.2, metadata={"help": "minus prob"}
)
total_up: int = field(
default=300000, metadata={"help": "total updates"}
)
block_size: int = field(
default=5, metadata={"help": "block size"}
)
logger = logging.getLogger(__name__)
@register_task("translation_lev_modified", dataclass=TranslationLevenshteinConfig)
class TranslationLevenshteinModifiedTask(TranslationTask):
"""
Translation (Sequence Generation) task for Levenshtein Transformer
See `"Levenshtein Transformer" <https://arxiv.org/abs/1905.11006>`_.
"""
cfg: TranslationLevenshteinConfig
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.cfg.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
# infer langcode
src, tgt = self.cfg.source_lang, self.cfg.target_lang
self.datasets[split] = load_langpair_dataset(
data_path,
split,
src,
self.src_dict,
tgt,
self.tgt_dict,
combine=combine,
dataset_impl=self.cfg.dataset_impl,
upsample_primary=self.cfg.upsample_primary,
left_pad_source=self.cfg.left_pad_source,
left_pad_target=self.cfg.left_pad_target,
max_source_positions=self.cfg.max_source_positions,
max_target_positions=self.cfg.max_target_positions,
truncate_source=self.cfg.truncate_source,
)
def inject_noise(self, target_tokens):
def _random_delete(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
max_len = target_tokens.size(1)
target_mask = target_tokens.eq(pad)
target_score = target_tokens.clone().float().uniform_()
target_score.masked_fill_(
target_tokens.eq(bos) | target_tokens.eq(eos), 0.0
)
target_score.masked_fill_(target_mask, 1)
target_score, target_rank = target_score.sort(1)
target_length = target_mask.size(1) - target_mask.float().sum(
1, keepdim=True
)
# do not delete <bos> and <eos> (we assign 0 score for them)
target_cutoff = (
2
+ (
(target_length - 2)
* target_score.new_zeros(target_score.size(0), 1).uniform_()
).long()
)
target_cutoff = target_score.sort(1)[1] >= target_cutoff
prev_target_tokens = (
target_tokens.gather(1, target_rank)
.masked_fill_(target_cutoff, pad)
.gather(1, target_rank.masked_fill_(target_cutoff, max_len).sort(1)[1])
)
prev_target_tokens = prev_target_tokens[
:, : prev_target_tokens.ne(pad).sum(1).max()
]
return prev_target_tokens
def _random_mask(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
unk = self.tgt_dict.unk()
target_masks = (
target_tokens.ne(pad) & target_tokens.ne(bos) & target_tokens.ne(eos)
)
target_score = target_tokens.clone().float().uniform_()
target_score.masked_fill_(~target_masks, 2.0)
target_length = target_masks.sum(1).float()
target_length = target_length * target_length.clone().uniform_()
target_length = target_length + 1 # make sure to mask at least one token.
_, target_rank = target_score.sort(1)
target_cutoff = new_arange(target_rank) < target_length[:, None].long()
prev_target_tokens = target_tokens.masked_fill(
target_cutoff.scatter(1, target_rank, target_cutoff), unk
)
return prev_target_tokens
def _full_mask(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
unk = self.tgt_dict.unk()
target_mask = (
target_tokens.eq(bos) | target_tokens.eq(eos) | target_tokens.eq(pad)
)
return target_tokens.masked_fill(~target_mask, unk)
def _block_mask(target_tokens):
block_size = self.cfg.block_size
pad = self.tgt_dict.pad()
unk = self.tgt_dict.unk()
target_masks = target_tokens.ne(pad)
target_length = target_masks.sum(1).float()
cutoff_length = target_length * target_length.clone().uniform_()
cutoff_length = cutoff_length.int() + 1 # make sure to mask at least one token.
prev_target_tokens = torch.ones((target_tokens.size(0),
target_tokens.size(1) + block_size)).to(target_tokens)
padded_target_tokens = torch.ones((target_tokens.size(0),
target_tokens.size(1) + block_size)).to(target_tokens)
for i in range(target_tokens.size(0)):
remain_length = target_length[i].int() - cutoff_length[i]
prev_target_tokens[i][:remain_length] = target_tokens[i][:remain_length]
prev_target_tokens[i][remain_length:block_size + remain_length] = unk
padded_target_tokens[i][:target_tokens.size(1)] = target_tokens[i]
prev_target_tokens = prev_target_tokens[
:, : prev_target_tokens.ne(pad).sum(1).max()
]
padded_target_tokens = padded_target_tokens[
:, : prev_target_tokens.ne(pad).sum(1).max()
]
return prev_target_tokens, padded_target_tokens
if self.cfg.noise == "random_delete":
return _random_delete(target_tokens)
elif self.cfg.noise == "random_mask":
return _random_mask(target_tokens)
elif self.cfg.noise == "block_mask":
return _block_mask(target_tokens)
elif self.cfg.noise == "full_mask":
return _full_mask(target_tokens)
elif self.cfg.noise == "no_noise":
return target_tokens
else:
raise NotImplementedError
def build_generator(self, models, args, **unused):
# add models input to match the API for SequenceGenerator
from fairseq.iterative_refinement_generator import IterativeRefinementGenerator
return IterativeRefinementGenerator(
self.target_dictionary,
eos_penalty=getattr(args, "iter_decode_eos_penalty", 0.0),
max_iter=getattr(args, "iter_decode_max_iter", 10),
beam_size=getattr(args, "iter_decode_with_beam", 1),
reranking=getattr(args, "iter_decode_with_external_reranker", False),
decoding_format=getattr(args, "decoding_format", None),
adaptive=not getattr(args, "iter_decode_force_max_iter", False),
retain_history=getattr(args, "retain_iter_history", False),
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
if constraints is not None:
# Though see Susanto et al. (ACL 2020): https://www.aclweb.org/anthology/2020.acl-main.325/
raise NotImplementedError(
"Constrained decoding with the translation_lev task is not supported"
)
return LanguagePairDataset(
src_tokens, src_lengths, self.source_dictionary, append_bos=False
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
train_ratio = max(0, min(1, update_num / self.cfg.total_up))
sample["glat"] = {"context_p": self.cfg.start_p - self.cfg.minus_p * train_ratio}
sample["prev_target"], sample["target"] = self.inject_noise(sample["target"])
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample)
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
sample["prev_target"], sample["target"] = self.inject_noise(sample["target"])
loss, sample_size, logging_output = criterion(model, sample)
EVAL_BLEU_ORDER = 4
if self.cfg.eval_bleu:
bleu = self._inference_with_bleu(self.sequence_generator, sample, model)
logging_output["_bleu_sys_len"] = bleu.sys_len
logging_output["_bleu_ref_len"] = bleu.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(bleu.counts) == EVAL_BLEU_ORDER
for i in range(EVAL_BLEU_ORDER):
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i]
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i]
return loss, sample_size, logging_output
def _inference_with_bleu(self, generator, sample, model):
import sacrebleu
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
self.cfg.eval_bleu_remove_bpe,
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(decode(gen_out[i][0]["tokens"]))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True, # don't count <unk> as matches to the hypo
)
)
if self.cfg.eval_bleu_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + refs[0])
if self.cfg.eval_tokenized_bleu:
return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none")
else:
return sacrebleu.corpus_bleu(hyps, [refs])
|