File size: 7,210 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Fine-tuning BEiT-3 on Image-text Retrieval

## COCO Retrieval Setup

1. [Setup environment](../README.md#setup).
2. Download [2014 train images](http://images.cocodataset.org/zips/train2014.zip), [2014 val images](http://images.cocodataset.org/zips/val2014.zip) and [karpathy split](https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip), then organize the dataset as following structure:

```
/path/to/your_data/
  train2014/            
    COCO_train2014_000000000009.jpg                
    ...
  val2014/              
    COCO_val2014_000000000042.jpg
    ...       
  dataset_coco.json
```

We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import RetrievalDataset
from transformers import XLMRobertaTokenizer

tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")

RetrievalDataset.make_coco_dataset_index(
    data_path="/path/to/your_data",
    tokenizer=tokenizer,
)
```


## Flickr30k Retrieval Setup

1. [Setup environment](README.md#setup).
2. Sign [flickr images request form](https://forms.illinois.edu/sec/229675) and download [karpathy split](https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip), then organize the dataset as following structure:

```
/path/to/your_data/
  flickr30k-images/            
    2923475135.jpg                
    ...      
  dataset_flickr30k.json
```

We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import RetrievalDataset
from transformers import XLMRobertaTokenizer

tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")

RetrievalDataset.make_flickr30k_dataset_index(
    data_path="/path/to/your_data",
    tokenizer=tokenizer,
    karpathy_path="/path/to/your_data",
)
```


## Example: Fine-tuning BEiT-3 on Retrieval

The BEiT-3 **base** model can be finetuned on retrieval tasks using 16 V100-32GB:

```bash       
python -m torch.distributed.launch --nproc_per_node=16 run_beit3_finetuning.py \
        --model beit3_base_patch16_384 \
        --input_size 384 \
        --task coco_retrieval \
        --batch_size 192 \
        --layer_decay 0.65 \
        --lr 2e-4 \
        --epochs 15 \
        --warmup_epochs 3 \
        --drop_path 0.2 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_base_itc_patch16_224.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model/log \
        --weight_decay 0.05 \
        --seed 42 \
        --save_ckpt_freq 5 \
        --enable_deepspeed \
        --checkpoint_activations
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `192*16 = 3072`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models)
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--lr`: 2e-4 for COCO retrieval, 1e-4 for Flickr30k retrieval
- `--epochs`: 15 for COCO retrieval, 20 for Flickr30k retrieval
- `--warmup_epochs`: 3 for COCO retrieval, 5 for Flickr30k retrieval
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory


The BEiT-3 **large** model can be finetuned on retrieval tasks using 2x16 V100-32GB:

```bash
python -m torch.distributed.launch --nproc_per_node=16 --nnodes=2 --node_rank=$NODE_RANK \
       --master_addr=$MASTER_ADDR --master_port=$MASTER_PORT run_beit3_finetuning.py \
        --model beit3_large_patch16_384 \
        --input_size 384 \
        --task coco_retrieval \
        --batch_size 96 \
        --layer_decay 0.85 \
        --lr 5e-5 \
        --epochs 15 \
        --warmup_epochs 3 \
        --drop_path 0.2 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_large_itc_patch16_224.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model/log \
        --weight_decay 0.05 \
        --seed 42 \
        --save_ckpt_freq 5 \
        --enable_deepspeed \
        --checkpoint_activations
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `96*32 = 3072`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models)
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--epochs`: 15 for COCO retrieval, 20 for Flickr30k retrieval
- `--warmup_epochs`: 3 for COCO retrieval, 5 for Flickr30k retrieval
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory


## Example: Evaluate BEiT-3 Fine-tuned model on COCO Retrieval and Flickr30k Retrieval

- Get the results of our fine-tuned BEiT3-base model on retrieval tasks using a single GPU:
```bash       
python -m torch.distributed.launch --nproc_per_node=1 run_beit3_finetuning.py \
        --model beit3_base_patch16_384 \
        --input_size 384 \
        --task coco_retrieval \
        --batch_size 16 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_base_patch16_384_coco_retrieval.pth \
        --data_path /path/to/your_data \
        --eval \
        --dist_eval
```
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--finetune`: **beit3_base_patch16_384_coco_retrieval.pth** for COCO retrieval, **beit3_base_patch16_384_f30k_retrieval.pth** for Flickr30k retrieval

- Get the results of our fine-tuned BEiT3-large model on retrieval tasks using a single GPU:
```bash       
python -m torch.distributed.launch --nproc_per_node=1 run_beit3_finetuning.py \
        --model beit3_large_patch16_384 \
        --input_size 384 \
        --task coco_retrieval \
        --batch_size 16 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_large_patch16_384_coco_retrieval.pth \
        --data_path /path/to/your_data \
        --eval \
        --dist_eval
```
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--finetune`: **beit3_large_patch16_384_coco_retrieval.pth** for COCO retrieval, **beit3_large_patch16_384_f30k_retrieval.pth** for Flickr30k retrieval