Spaces:
Sleeping
Sleeping
File size: 7,210 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Fine-tuning BEiT-3 on Image-text Retrieval
## COCO Retrieval Setup
1. [Setup environment](../README.md#setup).
2. Download [2014 train images](http://images.cocodataset.org/zips/train2014.zip), [2014 val images](http://images.cocodataset.org/zips/val2014.zip) and [karpathy split](https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip), then organize the dataset as following structure:
```
/path/to/your_data/
train2014/
COCO_train2014_000000000009.jpg
...
val2014/
COCO_val2014_000000000042.jpg
...
dataset_coco.json
```
We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import RetrievalDataset
from transformers import XLMRobertaTokenizer
tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")
RetrievalDataset.make_coco_dataset_index(
data_path="/path/to/your_data",
tokenizer=tokenizer,
)
```
## Flickr30k Retrieval Setup
1. [Setup environment](README.md#setup).
2. Sign [flickr images request form](https://forms.illinois.edu/sec/229675) and download [karpathy split](https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip), then organize the dataset as following structure:
```
/path/to/your_data/
flickr30k-images/
2923475135.jpg
...
dataset_flickr30k.json
```
We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import RetrievalDataset
from transformers import XLMRobertaTokenizer
tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")
RetrievalDataset.make_flickr30k_dataset_index(
data_path="/path/to/your_data",
tokenizer=tokenizer,
karpathy_path="/path/to/your_data",
)
```
## Example: Fine-tuning BEiT-3 on Retrieval
The BEiT-3 **base** model can be finetuned on retrieval tasks using 16 V100-32GB:
```bash
python -m torch.distributed.launch --nproc_per_node=16 run_beit3_finetuning.py \
--model beit3_base_patch16_384 \
--input_size 384 \
--task coco_retrieval \
--batch_size 192 \
--layer_decay 0.65 \
--lr 2e-4 \
--epochs 15 \
--warmup_epochs 3 \
--drop_path 0.2 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_base_itc_patch16_224.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_model \
--log_dir /path/to/save/your_model/log \
--weight_decay 0.05 \
--seed 42 \
--save_ckpt_freq 5 \
--enable_deepspeed \
--checkpoint_activations
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `192*16 = 3072`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models)
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--lr`: 2e-4 for COCO retrieval, 1e-4 for Flickr30k retrieval
- `--epochs`: 15 for COCO retrieval, 20 for Flickr30k retrieval
- `--warmup_epochs`: 3 for COCO retrieval, 5 for Flickr30k retrieval
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory
The BEiT-3 **large** model can be finetuned on retrieval tasks using 2x16 V100-32GB:
```bash
python -m torch.distributed.launch --nproc_per_node=16 --nnodes=2 --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=$MASTER_PORT run_beit3_finetuning.py \
--model beit3_large_patch16_384 \
--input_size 384 \
--task coco_retrieval \
--batch_size 96 \
--layer_decay 0.85 \
--lr 5e-5 \
--epochs 15 \
--warmup_epochs 3 \
--drop_path 0.2 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_large_itc_patch16_224.pth \
--data_path /path/to/your_data \
--output_dir /path/to/save/your_model \
--log_dir /path/to/save/your_model/log \
--weight_decay 0.05 \
--seed 42 \
--save_ckpt_freq 5 \
--enable_deepspeed \
--checkpoint_activations
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `96*32 = 3072`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models)
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--epochs`: 15 for COCO retrieval, 20 for Flickr30k retrieval
- `--warmup_epochs`: 3 for COCO retrieval, 5 for Flickr30k retrieval
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory
## Example: Evaluate BEiT-3 Fine-tuned model on COCO Retrieval and Flickr30k Retrieval
- Get the results of our fine-tuned BEiT3-base model on retrieval tasks using a single GPU:
```bash
python -m torch.distributed.launch --nproc_per_node=1 run_beit3_finetuning.py \
--model beit3_base_patch16_384 \
--input_size 384 \
--task coco_retrieval \
--batch_size 16 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_base_patch16_384_coco_retrieval.pth \
--data_path /path/to/your_data \
--eval \
--dist_eval
```
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--finetune`: **beit3_base_patch16_384_coco_retrieval.pth** for COCO retrieval, **beit3_base_patch16_384_f30k_retrieval.pth** for Flickr30k retrieval
- Get the results of our fine-tuned BEiT3-large model on retrieval tasks using a single GPU:
```bash
python -m torch.distributed.launch --nproc_per_node=1 run_beit3_finetuning.py \
--model beit3_large_patch16_384 \
--input_size 384 \
--task coco_retrieval \
--batch_size 16 \
--sentencepiece_model /your_beit3_model_path/beit3.spm \
--finetune /your_beit3_model_path/beit3_large_patch16_384_coco_retrieval.pth \
--data_path /path/to/your_data \
--eval \
--dist_eval
```
- `--task`: **coco_retrieval** for COCO retrieval, **flickr30k** for Flickr30k retrieval
- `--finetune`: **beit3_large_patch16_384_coco_retrieval.pth** for COCO retrieval, **beit3_large_patch16_384_f30k_retrieval.pth** for Flickr30k retrieval
|