File size: 7,718 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Fine-tuning BEiT-3 on Image Captioning

## COCO Captioning Setup

1. [Setup environment](../README.md#setup).
2. Download [2014 train images](http://images.cocodataset.org/zips/train2014.zip), [2014 val images](http://images.cocodataset.org/zips/val2014.zip) and [karpathy split](https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip), then organize the dataset as following structure:

```
/path/to/your_data/
  train2014/            
    COCO_train2014_000000000009.jpg                
    ...
  val2014/              
    COCO_val2014_000000000042.jpg
    ...       
  dataset_coco.json
```

We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import CaptioningDataset
from transformers import XLMRobertaTokenizer

tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")

CaptioningDataset.make_coco_captioning_dataset_index(
    data_path="/path/to/your_data",
    tokenizer=tokenizer,
)
```


## NoCaps Setup

1. [Setup environment](README.md#setup).
2. Download [NoCaps val set](https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json), [NoCaps test set](https://s3.amazonaws.com/nocaps/nocaps_test_image_info.json) and download imags using the urls in val and test json files, then organize the dataset as following structure:

```
/path/to/your_data/
  val/            
    09c863d76bcf6b00.jpg                
    ...
  test/              
    19dc6913830a0a21.jpg
    ...       
  nocaps_val_4500_captions.json
  nocaps_test_image_info.json
```

We then generate the index json files using the following command. [beit3.spm](https://conversationhub.blob.core.windows.net/beit-share-public/beit3/sentencepiece/beit3.spm?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) is the sentencepiece model used for tokenizing texts.
```
from datasets import CaptioningDataset
from transformers import XLMRobertaTokenizer

tokenizer = XLMRobertaTokenizer("/your_beit3_model_path/beit3.spm")

CaptioningDataset.make_nocaps_captioning_dataset_index(
    data_path="/path/to/your_data",
)
```
We use COCO captioning training set as the training data of NoCaps.


## Example: Fine-tuning BEiT-3 on Captioning

The BEiT-3 **base** model can be fine-tuned on captioning tasks using 8 V100-32GB:

```bash       
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
        --model beit3_base_patch16_480 \
        --input_size 480 \
        --task coco_captioning \
        --batch_size 32 \
        --layer_decay 1.0 \
        --lr 4e-5 \
        --randaug \
        --epochs 10 \
        --warmup_epochs 1 \
        --drop_path 0.1 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_base_patch16_224.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model/log \
        --weight_decay 0.05 \
        --seed 42 \
        --save_ckpt_freq 5 \
        --num_max_bpe_tokens 32 \
        --captioning_mask_prob 0.7 \
        --drop_worst_after 12000 \
        --dist_eval \
        --checkpoint_activations \
        --enable_deepspeed
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `8*32 = 256`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models).
- `--task`: **coco_captioning** for COCO captioning and **nocaps** for NoCaps dataset.
- `lr`: 4e-5 for COCO captioning and 1e-5 for NoCaps.
- `--enable_deepspeed`: optional. If you use apex, please enable deepspeed.
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory.


The BEiT-3 **large** model can be fine-tuned on captioning tasks using 8 V100-32GB:

```bash
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
        --model beit3_large_patch16_480 \
        --input_size 480 \
        --task coco_captioning \
        --batch_size 32 \
        --layer_decay 1.0 \
        --lr 8e-6 \
        --randaug \
        --epochs 10 \
        --warmup_epochs 1 \
        --drop_path 0.1 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_large_patch16_224.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model/log \
        --weight_decay 0.05 \
        --seed 42 \
        --save_ckpt_freq 5 \
        --num_max_bpe_tokens 32 \
        --captioning_mask_prob 0.7 \
        --drop_worst_after 12000 \
        --dist_eval \
        --checkpoint_activations \
        --enable_deepspeed
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `8*32 = 256`.
- `--finetune`: weight path of your pretrained models; please download the pretrained model weights in [README.md](../README.md#pretrained-models).
- `--task`: **coco_captioning** for COCO captioning and **nocaps** for NoCaps dataset.
- `lr`: 8e-6 for COCO captioning and NoCaps.
- `--enable_deepspeed`: optional. If you use apex, please enable deepspeed.
- `--checkpoint_activations`: using gradient checkpointing for saving GPU memory.


## Example: Evaluate BEiT-3 Fine-tuned model on Captioning

- Get the prediction file of the fine-tuned BEiT3-base model on captioning with 8 V100-32GB:
```bash       
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
        --model beit3_base_patch16_480 \
        --input_size 480 \
        --task coco_captioning \
        --batch_size 16 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_base_patch16_480_coco_captioning.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_prediction \
        --eval \
        --dist_eval
```
- `--task`: **coco_captioning** for COCO captioning and **nocaps** for NoCaps dataset.
- `--finetune`: **beit3_base_patch16_480_coco_captioning.pth** for COCO captioning and **beit3_base_patch16_480_nocaps.pth** for NoCaps dataset.

- Get the prediction file of the fine-tuned BEiT3-large model on captioning with 8 V100-32GB:
```bash       
python -m torch.distributed.launch --nproc_per_node=8 run_beit3_finetuning.py \
        --model beit3_large_patch16_480 \
        --input_size 480 \
        --task coco_captioning \
        --batch_size 16 \
        --sentencepiece_model /your_beit3_model_path/beit3.spm \
        --finetune /your_beit3_model_path/beit3_large_patch16_480_coco_captioning.pth \
        --data_path /path/to/your_data \
        --output_dir /path/to/save/your_prediction \
        --eval \
        --dist_eval
```
- `--task`: **coco_captioning** for COCO captioning and **nocaps** for NoCaps dataset.
- `--finetune`: **beit3_large_patch16_480_coco_captioning.pth** for COCO captioning and **beit3_large_patch16_480_nocaps.pth** for NoCaps dataset.

Please then submit the prediction file in the `output_dir` to the [evaluation server](https://eval.ai/web/challenges/challenge-page/355/overview) to obtain the NoCaps val and test results.