File size: 23,705 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# --------------------------------------------------------
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366)
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Zhiliang Peng
# Based on BEiT, timm, DeiT and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'

import io
import os
import math
import time
import json
import glob
from collections import defaultdict, deque
import datetime
import numpy as np
from timm.utils import get_state_dict

from pathlib import Path
import argparse

import torch
import torch.distributed as dist
from torch._six import inf

from tensorboardX import SummaryWriter


def bool_flag(s):
    """
    Parse boolean arguments from the command line.
    """
    FALSY_STRINGS = {"off", "false", "0"}
    TRUTHY_STRINGS = {"on", "true", "1"}
    if s.lower() in FALSY_STRINGS:
        return False
    elif s.lower() in TRUTHY_STRINGS:
        return True
    else:
        raise argparse.ArgumentTypeError("invalid value for a boolean flag")

def get_model(model):
    if isinstance(model, torch.nn.DataParallel) \
      or isinstance(model, torch.nn.parallel.DistributedDataParallel):
        return model.module
    else:
        return model
            
class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


class TensorboardLogger(object):
    def __init__(self, log_dir):
        self.writer = SummaryWriter(logdir=log_dir)
        self.step = 0

    def set_step(self, step=None):
        if step is not None:
            self.step = step
        else:
            self.step += 1

    def update(self, head='scalar', step=None, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step)
    
    def update_image(self, head='images', step=None, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            self.writer.add_image(head + "/" + k, v, self.step if step is None else step)
            
    def flush(self):
        self.writer.flush()


def _load_checkpoint_for_ema(model_ema, checkpoint):
    """
    Workaround for ModelEma._load_checkpoint to accept an already-loaded object
    """
    mem_file = io.BytesIO()
    torch.save(checkpoint, mem_file)
    mem_file.seek(0)
    model_ema._load_checkpoint(mem_file)


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)

def all_reduce(tensor, op=dist.ReduceOp.SUM, async_op=False):
    world_size = get_world_size()

    if world_size == 1:
        return tensor
    dist.all_reduce(tensor, op=op, async_op=async_op)

    return tensor

def all_gather_batch(tensors):
    """
    Performs all_gather operation on the provided tensors.
    """
    # Queue the gathered tensors
    world_size = get_world_size()
    # There is no need for reduction in the single-proc case
    if world_size == 1:
        return tensors
    tensor_list = []
    output_tensor = []
    for tensor in tensors:
        tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
        dist.all_gather(
            tensor_all,
            tensor,
            async_op=False  # performance opt
        )

        tensor_list.append(tensor_all)

    for tensor_all in tensor_list:
        output_tensor.append(torch.cat(tensor_all, dim=0))
    return output_tensor

class GatherLayer(torch.autograd.Function):
    """
    Gather tensors from all workers with support for backward propagation:
    This implementation does not cut the gradients as torch.distributed.all_gather does.
    """

    @staticmethod
    def forward(ctx, x):
        output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
        dist.all_gather(output, x)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):
        all_gradients = torch.stack(grads)
        dist.all_reduce(all_gradients)
        return all_gradients[dist.get_rank()]


def all_gather_batch_with_grad(tensors):
    """
    Performs all_gather operation on the provided tensors.
    Graph remains connected for backward grad computation.
    """
    # Queue the gathered tensors
    world_size = get_world_size()
    # There is no need for reduction in the single-proc case
    if world_size == 1:
        return tensors
    tensor_list = []
    output_tensor = []

    for tensor in tensors:
        tensor_all = GatherLayer.apply(tensor)
        tensor_list.append(tensor_all)

    for tensor_all in tensor_list:
        output_tensor.append(torch.cat(tensor_all, dim=0))
    return output_tensor

def _get_rank_env():
    if "RANK" in os.environ:
        return int(os.environ["RANK"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_RANK'])


def _get_local_rank_env():
    if "LOCAL_RANK" in os.environ:
        return int(os.environ["LOCAL_RANK"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])


def _get_world_size_env():
    if "WORLD_SIZE" in os.environ:
        return int(os.environ["WORLD_SIZE"])
    else:
        return int(os.environ['OMPI_COMM_WORLD_SIZE'])


def init_distributed_mode(args):
    if args.dist_on_itp:
        args.rank = _get_rank_env()
        args.world_size = _get_world_size_env()  # int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = _get_local_rank_env()
        args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
    missing_keys = []
    unexpected_keys = []
    error_msgs = []
    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(model, prefix=prefix)

    warn_missing_keys = []
    ignore_missing_keys = []
    for key in missing_keys:
        keep_flag = True
        for ignore_key in ignore_missing.split('|'):
            if ignore_key in key:
                keep_flag = False
                break
        if keep_flag:
            warn_missing_keys.append(key)
        else:
            ignore_missing_keys.append(key)

    missing_keys = warn_missing_keys

    if len(missing_keys) > 0:
        print("Weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, missing_keys))
    if len(unexpected_keys) > 0:
        print("Weights from pretrained model not used in {}: {}".format(
            model.__class__.__name__, unexpected_keys))
    if len(ignore_missing_keys) > 0:
        print("Ignored weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, ignore_missing_keys))
    if len(error_msgs) > 0:
        print('\n'.join(error_msgs))

def get_grad_norm(parameters, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
    total_norm = total_norm ** (1. / norm_type)
    return total_norm

class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, layer_names=None):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters, layer_names=layer_names)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict): 
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0, layer_names=None) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    
    parameters = [p for p in parameters if p.grad is not None]
        
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        # total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
        layer_norm = torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters])
        total_norm = torch.norm(layer_norm, norm_type)
        # print(layer_norm.max(dim=0))
        
        if layer_names is not None:
            if torch.isnan(total_norm) or torch.isinf(total_norm) or total_norm > 1.0:
                value_top, name_top = torch.topk(layer_norm, k=5)
                print(f"Top norm value: {value_top}")
                print(f"Top norm name: {[layer_names[i][7:] for i in name_top.tolist()]}")
        
    return total_norm


def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
                     start_warmup_value=0, warmup_steps=-1):
    warmup_schedule = np.array([])
    warmup_iters = warmup_epochs * niter_per_ep
    if warmup_steps > 0:
        warmup_iters = warmup_steps
    print("Set warmup steps = %d" % warmup_iters)
    if warmup_epochs > 0:
        warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)

    iters = np.arange(epochs * niter_per_ep - warmup_iters)
    schedule = np.array(
        [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])

    schedule = np.concatenate((warmup_schedule, schedule))

    assert len(schedule) == epochs * niter_per_ep
    return schedule


def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None, save_ckpt_freq=1):
    output_dir = Path(args.output_dir)
    epoch_name = str(epoch)

    if not getattr(args, 'enable_deepspeed', False):
        checkpoint_paths = [output_dir / 'checkpoint.pth']
        if epoch == 'best':
            checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name),]
        elif (epoch + 1) % save_ckpt_freq == 0:
            checkpoint_paths.append(output_dir / ('checkpoint-%s.pth' % epoch_name))

        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                # 'scaler': loss_scaler.state_dict(),
                'args': args,
            }
            if loss_scaler is not None:
                to_save['scaler'] = loss_scaler.state_dict()

            if model_ema is not None:
                to_save['model_ema'] = get_state_dict(model_ema)
                
            if optimizer_disc is not None:
                to_save['optimizer_disc'] = optimizer_disc.state_dict()

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch}
        if model_ema is not None:
            client_state['model_ema'] = get_state_dict(model_ema)
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)           

def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None):
    output_dir = Path(args.output_dir)
    
    if not getattr(args, 'enable_deepspeed', False):
        # torch.amp
        if args.auto_resume and len(args.resume) == 0:
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint.pth'))
            if len(all_checkpoints) > 0:
                args.resume = os.path.join(output_dir, 'checkpoint.pth')
            else:
                all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
                latest_ckpt = -1
                for ckpt in all_checkpoints:
                    t = ckpt.split('-')[-1].split('.')[0]
                    if t.isdigit():
                        latest_ckpt = max(int(t), latest_ckpt)
                if latest_ckpt >= 0:
                    args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
            print("Auto resume checkpoint: %s" % args.resume)

        if args.resume:
            if args.resume.startswith('https'):
                checkpoint = torch.hub.load_state_dict_from_url(
                    args.resume, map_location='cpu', check_hash=True)
            else:
                checkpoint = torch.load(args.resume, map_location='cpu')
            model_without_ddp.load_state_dict(checkpoint['model']) # strict: bool=True, , strict=False
            print("Resume checkpoint %s" % args.resume)
            if 'optimizer' in checkpoint and 'epoch' in checkpoint:
                optimizer.load_state_dict(checkpoint['optimizer'])
                print(f"Resume checkpoint at epoch {checkpoint['epoch']}")
                args.start_epoch = checkpoint['epoch'] + 1
                if hasattr(args, 'model_ema') and args.model_ema:
                    _load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
                if 'scaler' in checkpoint:
                    loss_scaler.load_state_dict(checkpoint['scaler'])
                print("With optim & sched!")
            if 'optimizer_disc' in checkpoint:
                optimizer_disc.load_state_dict(checkpoint['optimizer_disc'])
    else:
        # deepspeed, only support '--auto_resume'.
        if args.auto_resume:
            all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                t = ckpt.split('-')[-1].split('.')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
                print("Auto resume checkpoint: %d" % latest_ckpt)
                _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
                args.start_epoch = client_states['epoch'] + 1
                if model_ema is not None:
                    if args.model_ema:
                        _load_checkpoint_for_ema(model_ema, client_states['model_ema'])

def create_ds_config(args):
    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    with open(os.path.join(args.output_dir, "latest"), mode="w") as f:
        pass

    args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
    with open(args.deepspeed_config, mode="w") as writer:
        ds_config = {
            "train_batch_size": args.batch_size * args.update_freq * get_world_size(),
            "train_micro_batch_size_per_gpu": args.batch_size,
            "steps_per_print": 1000,
            "optimizer": {
                "type": "Adam",
                "adam_w_mode": True,
                "params": {
                    "lr": args.lr,
                    "weight_decay": args.weight_decay,
                    "bias_correction": True,
                    "betas": [
                        0.9,
                        0.999
                    ],
                    "eps": 1e-8
                }
            },
            "fp16": {
                "enabled": True,
                "loss_scale": 0,
                "initial_scale_power": 7,
                "loss_scale_window": 128
            }
        }

        writer.write(json.dumps(ds_config, indent=2))