Spaces:
Sleeping
Sleeping
File size: 22,910 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
# --------------------------------------------------------
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366)
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Zhiliang Peng
# Based on BEiT, timm, DeiT and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import math
import torch
import torch.nn as nn
from functools import partial
from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
def trunc_normal_(tensor, mean=0., std=1.):
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
class VisionTransformerForMaskedImageModeling(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.num_heads = num_heads
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
attn_head_dim=attn_head_dim,
)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.init_std = init_std
self.lm_head = nn.Linear(embed_dim, vocab_size)
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=self.init_std)
trunc_normal_(self.cls_token, std=self.init_std)
trunc_normal_(self.mask_token, std=self.init_std)
trunc_normal_(self.lm_head.weight, std=self.init_std)
self.apply(self._init_weights)
self.fix_init_weight()
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=self.init_std)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=self.init_std)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_num_layers(self):
return len(self.blocks)
def forward_features(self, x, bool_masked_pos):
x = self.patch_embed(x, bool_masked_pos=bool_masked_pos)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for blk in self.blocks:
x = blk(x, rel_pos_bias=rel_pos_bias)
return self.norm(x)
def forward(self, x, bool_masked_pos=None, return_all_tokens=False, return_patch_tokens=False):
if bool_masked_pos is None:
bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device)
x = self.forward_features(x, bool_masked_pos=bool_masked_pos)
x = x[:, 1:]
if return_patch_tokens:
return x
if return_all_tokens:
return self.lm_head(x)
else:
# return the masked tokens
return self.lm_head(x[bool_masked_pos])
def forward_return_qkv(self, x, bool_masked_pos=None, split_out_as_qkv=False):
if bool_masked_pos is None:
bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device)
x = self.patch_embed(x, bool_masked_pos=bool_masked_pos)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x, rel_pos_bias=rel_pos_bias)
else:
# with torch.cuda.amp.autocast(enabled=False):
x, qkv = blk(x, rel_pos_bias=rel_pos_bias, return_qkv=True)
if split_out_as_qkv:
x = self.norm(x)
x = self.lm_head(x) # [b, n+1, 3*c]
q, k, v = x.chunk(3, dim=-1) # [b, n+1, c]
b, n, c =q.shape
q = q.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
k = k.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
v = v.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
return x, q, k, v
else:
x = self.norm(x)
x = x[:, 1:]
x = self.lm_head(x[bool_masked_pos])
q, k, v = qkv[0], qkv[1], qkv[2]
return x, q, k, v
def forward_intermediate(self, x, bool_masked_pos=None, layer_id=12):
if bool_masked_pos is None:
bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device)
x = self.patch_embed(x, bool_masked_pos=bool_masked_pos)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
if isinstance(layer_id, list):
output_list = []
for l, blk in enumerate(self.blocks):
x = blk(x, rel_pos_bias=rel_pos_bias)
if l in layer_id:
output_list.append(x[:, 1:])
return output_list
elif isinstance(layer_id, int):
for l, blk in enumerate(self.blocks):
if l < layer_id:
x = blk(x, rel_pos_bias=rel_pos_bias)
elif l == layer_id:
x = blk.norm1(x)
else:
break
return x[:, 1:]
else:
raise NotImplementedError(f"Not support for layer id is {layer_id} now!")
def interpolate_pos_encoding(self, x, w, h):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size[0]
h0 = h // self.patch_embed.patch_size[0]
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
)
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def get_last_selfattention(self, x):
B, nc, w, h = x.shape
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
if x.shape[1] != self.pos_embed.shape[1]:
x = x + self.interpolate_pos_encoding(x, w, h)
else:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x, rel_pos_bias=rel_pos_bias)
else:
# return attention of the last block
return blk(x, rel_pos_bias=rel_pos_bias, return_attention=True)
class VisionTransformerForMaskedImageModelingCLS(VisionTransformerForMaskedImageModeling):
def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02,
early_layers=6, head_layers=2, shared_lm_head=True):
super().__init__(img_size=img_size, patch_size=patch_size, in_chans=in_chans, vocab_size=vocab_size, embed_dim=embed_dim, depth=depth,
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate, norm_layer=norm_layer, init_values=init_values, attn_head_dim=attn_head_dim,
use_abs_pos_emb=use_abs_pos_emb, use_rel_pos_bias=use_rel_pos_bias, use_shared_rel_pos_bias=use_shared_rel_pos_bias, init_std=init_std)
self.early_layers = early_layers
print(f'early layer {early_layers}, late layer {depth - early_layers}, condenser head layers {head_layers}, shared_lm_head {shared_lm_head}')
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, max(depth, early_layers + head_layers))] # stochastic depth decay rule
self.cls_pt_layers = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
attn_head_dim=attn_head_dim,
)
for i in range(early_layers, early_layers + head_layers)])
self.fix_init_cls_pt_weight()
self.shared_lm_head = shared_lm_head
if not shared_lm_head:
self.cls_pt_norm = norm_layer(embed_dim)
self.cls_pt_lm_head = nn.Linear(embed_dim, vocab_size)
self.cls_pt_norm.apply(self._init_weights)
self.cls_pt_lm_head.apply(self._init_weights)
def fix_init_cls_pt_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.cls_pt_layers):
rescale(layer.attn.proj.weight.data, self.early_layers + layer_id + 1)
rescale(layer.mlp.fc2.weight.data, self.early_layers + layer_id + 1)
def forward_features(self, x, bool_masked_pos):
x = self.patch_embed(x, bool_masked_pos=bool_masked_pos)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
mask_token = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token)
x = x * (1 - w) + mask_token * w
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
for i, blk in enumerate(self.blocks):
x = blk(x, rel_pos_bias=rel_pos_bias)
if i + 1 == self.early_layers:
early_states = x[:, 1:]
x_cls_pt = torch.cat([x[:, [0]], early_states], dim=1)
for blk in self.cls_pt_layers:
x_cls_pt = blk(x_cls_pt, rel_pos_bias=rel_pos_bias)
return self.norm(x), self.norm(x_cls_pt) if self.shared_lm_head else self.cls_pt_norm(x_cls_pt)
def forward(self, x, bool_masked_pos=None, return_all_tokens=False, return_patch_tokens=False):
if bool_masked_pos is None:
bool_masked_pos = torch.zeros((x.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(x.device)
x, x_cls_pt = self.forward_features(x, bool_masked_pos=bool_masked_pos)
x = x[:, 1:]
x_cls_pt = x_cls_pt[:, 1:]
if return_patch_tokens:
return [x, x_cls_pt]
if return_all_tokens:
return [self.lm_head(x), self.lm_head(x_cls_pt) if self.shared_lm_head else self.cls_pt_lm_head(x_cls_pt)]
else:
# return the masked tokens
return [self.lm_head(x[bool_masked_pos]), self.lm_head(x_cls_pt[bool_masked_pos]) if self.shared_lm_head else self.cls_pt_lm_head(x_cls_pt[bool_masked_pos])]
@register_model
def beit_base_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModelingCLS(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_base_patch16_224_8k_vocab(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_base_patch16_192_8k_vocab(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
img_size=192, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_base_patch16_256_8k_vocab(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
img_size=256, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_24x544_patch16_224_8k_vocab(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
img_size=224, patch_size=16, embed_dim=544, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_24x544_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModelingCLS(
img_size=224, patch_size=16, embed_dim=544, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_large_patch16_224_8k_vocab_cls_pt(pretrained=False, **kwargs):
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModelingCLS(
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=vocab_size, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_huge_patch14_224_8k_vocab(pretrained=False, **kwargs):
# patch_size=14, embed_dim=1280, depth=32, num_heads=16
if "num_classes" in kwargs:
_ = kwargs.pop("num_classes")
if 'vocab_size' in kwargs:
vocab_size = kwargs['vocab_size']
_ = kwargs.pop("vocab_size")
else:
vocab_size = 8192
model = VisionTransformerForMaskedImageModeling(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.load(
kwargs["init_ckpt"], map_location="cpu"
)
model.load_state_dict(checkpoint["model"])
return model |