File size: 11,657 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# BEiT v2 Fine-tuning on ImageNet-1k (Image Classification)

## Model Zoo

We provide some finetuned models here.

| model name | pre-training epochs on ImageNet-1k | intermeidate fine-tuning epochs on ImageNet-21k | fine-tuning epochs on ImageNet-1k | weight | top-1 accuracy (%) |
|------------|:------------------:|:------:|:------:| :------:| :------:|
| beit_base_patch16_224 | 300 | 0 | 100 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_300e_ft1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 85.0 |
| beit_base_patch16_224 | 1600 |0 | 100 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 85.5 |
| beit_base_patch16_224 | 1600 | 90 | 30 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 86.5 |
| beit_large_patch16_224 | 300 | 0 | 50 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_300e_ft1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 86.6 |
| beit_large_patch16_224 | 1600 |0 | 50 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 87.3 |
| beit_large_patch16_224 | 1600 | 90 | 20 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) | 88.4 |


## Example: Fine-tuning BEiT v2 on ImageNet-1k (Image Classification)

The BEiT v2 **base** model can be finetuned on ImageNet-1k using a DGX box (8 V100-32GB):

```bash       
python -m torch.distributed.launch --nproc_per_node=8 run_class_finetuning.py \
        --data_path /path/to/imagenet-1k/train \
        --eval_data_path /path/to/imagenet-1k/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model \
        --model beit_base_patch16_224 \
        --weight_decay 0.05 \
        --finetune https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D \
        --batch_size 128 \
        --lr 5e-5 \
        --update_freq 1 \
        --warmup_epochs 20 \
        --epochs 30 \
        --layer_decay 0.75 \
        --drop_path 0.1 \
        --mixup 0. \
        --cutmix 0. \
        --imagenet_default_mean_and_std \
        --dist_eval \
        --save_ckpt_freq 20 \
        --enable_deepspeed 
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `8*128*1 = 1024`.
- `--finetune`: weight path of your pretrained models; you can pretrain it by yourself, or download the pretrained model weights in [PRETRAINING.md](PRETRAINING.md)
- `--lr`: learning rate. 5e-4 for pretrained models and 5e-5 for intermediate fine-tuned models.
- `--epochs`: fine-tuning epochs. 100 for pretrained models and 30 for intermediate fine-tuned models.
- `--mixup`: 0.8 for pretrained models and 0. for intermediate fine-tuned models.
- `--cutmix`: 1.0 for pretrained models and 0. for intermediate fine-tuned models.
- `--layer_decay`: 0.6 for 1600 epochs pretrained models and 0.65 for 300 epochs. 0.75 for intermediate fine-tuned models.
- `--drop_path`: 0.2 for 1600 epochs pretrained models and 0.1 for 300 epochs. 0.1 for intermediate fine-tuned models.
- `--enable_deepspeed`: optional.


The BEiT v2 **large** model can be finetuned on ImageNet-1k using a DGX box (8 V100-32GB):

```bash
python -m torch.distributed.launch --nproc_per_node=8 run_class_finetuning.py \
        --data_path /path/to/imagenet-1k/train \
        --eval_data_path /path/to/imagenet-1k/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model \
        --model beit_large_patch16_224 \
        --weight_decay 0.05 \
        --finetune https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D \
        --batch_size 64 \
        --lr 7e-5 \
        --update_freq 2 \
        --warmup_epochs 5 \
        --epochs 20 \
        --layer_decay 0.8 \
        --drop_path 0.25 \
        --mixup 0. \
        --cutmix 0. \
        --imagenet_default_mean_and_std   \
        --dist_eval \
        --save_ckpt_freq 10 \
        --enable_deepspeed 
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `8*64*2 = 1024`.
- `--finetune`: weight path of your pretrained models; you can pretrain it by yourself, or download the pretrained model weights in [PRETRAINING.md](PRETRAINING.md).
- `--lr`: learning rate. 2e-4 for 1600 epochs pretrained model and 5e-4 for 300 epochs. 7e-5 for intermediate fine-tuned models.
- `--epochs`: fine-tuning epochs. 50 for pretrained models and 20 for intermediate fine-tuned models.
- `--mixup`: 0.8 for pretrained models and 0. for intermediate fine-tuned models.
- `--cutmix`: 1.0 for pretrained models and 0. for intermediate fine-tuned models.
- `--layer_decay`: 0.8 for all models.
- `--drop_path`: 0.2 for pretrained models and 0.25 for intermediate fine-tuned models.
- `--enable_deepspeed`: optional.

## Example: Evaluate BEiT v2 Finetuned model on ImageNet-1k (Image Classification)

- Evaluate our fine-tuned BEiT-base model on ImageNet val with a single GPU:
```bash       
python -m torch.distributed.launch --nproc_per_node=1 run_class_finetuning.py \
        --data_path /path/to/imagenet-1k/train \
        --eval_data_path /path/to/imagenet-1k/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model beit_base_patch16_224 \
        --finetune https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D \
        --batch_size 128 \
        --imagenet_default_mean_and_std \
        --dist_eval \
        --eval
```

Expected results:
```
* Acc@1 86.458 Acc@5 97.978 loss 0.569
```

- Evaluate our fine-tuned BEiT-large model on ImageNet val with a single GPU:
```bash       
python -m torch.distributed.launch --nproc_per_node=1 run_class_finetuning.py \
        --data_path /path/to/imagenet-1k/train \
        --eval_data_path /path/to/imagenet-1k/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model beit_large_patch16_224 \
        --finetune https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D \
        --batch_size 128 \
        --imagenet_default_mean_and_std \
        --dist_eval \
        --eval
```

Expected results:
```
* Acc@1 88.370 Acc@5 98.578 loss 0.493
```

## Robust Evaluation on ImageNet Variants (Image Classification)

Download the datasets (ImageNet-Adversarial, ImageNet-Rendition, and ImageNet-Sketch) following [timm](https://github.com/rwightman/pytorch-image-models/blob/master/results/README.md).

For ImageNet-Rendition variants, one can test it like:
```bash       
python -m torch.distributed.launch --nproc_per_node=1 run_class_finetuning.py \
        --robust_test 'imagenet_r' \
        --data_path /path/to/imagenet-r \
        --eval_data_path /path/to/imagenet-r \
        --nb_classes 200 \
        --data_set image_folder \
        --model beit_large_patch16_224 \
        --finetune https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D \
        --batch_size 128 \
        --imagenet_default_mean_and_std \
        --dist_eval \
        --save_ckpt_freq 20 \
        --eval
```
- `--robust_test`: `imagenet_r` for ImageNet-Rendition and `imagenet_a` for ImageNet-Adversarial.
- `--nb_classes`: 200 for ImageNet-Rendition and ImageNet-Adversarial, and 1000 for ImageNet-Sketch.


Expected results:
```
* Acc@1 69.940 Acc@5 82.890 loss 1.541
```


## Example: Intermediate fine-tuning BEiT v2 on ImageNet-21k
The BEiT v2 **base/large** model can be intermediate fine-tuned on ImageNet-21k using 2 DGX boxes (16 V100-32GB):
```bash
python -m torch.distributed.launch --nnodes 2 --node_rank {0, 1} --nproc_per_node=16  run_class_finetuning.py \
        --data_path /path/to/imagenet-21k/train \
        --disable_eval_during_finetuning \
        --nb_classes 21841 \
        --data_set image_folder \
        --output_dir /path/to/save/your_model \
        --log_dir /path/to/save/your_model \
        --model beit_base_patch16_224 \
        --weight_decay 0.05 \
        --finetune /path/to/save/your_pretraining_model \
        --batch_size 128 \
        --lr 6e-4 \
        --update_freq 1 \
        --warmup_epochs 20 \
        --epochs 90 \
        --layer_decay 0.75 \
        --drop_path 0.1 \
        --mixup 0.8 \
        --cutmix 1.0 \
        --imagenet_default_mean_and_std \
        --save_ckpt_freq 20 \
        --enable_deepspeed 
```
- `--batch_size`: batch size per GPU. Effective batch size = `number of GPUs` * `--batch_size` * `--update_freq`. So in the above example, the effective batch size is `32*128*1 = 4096`.
- `--finetune`: weight path of your pretrained model; you can pretrain it by yourself, or download the pretrained model weight in [PRETRAINING.md](PRETRAINING.md)
- `--drop_path`: 0.1 for base model and 0.2 for large model.
- `--enable_deepspeed`: optional.

We provide some intermediate fine-tuned models here.
| model name | pre-training epochs on ImageNet-1k | intermediate fine-tuning epochs on ImageNet-21k | weight |
|------------|:------------------:|:------:|:------:|
| beit_base_patch16_224 | 1600 | 90 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) |
| beit_large_patch16_224 | 1600 | 90 | [link](https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D) |