File size: 8,087 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# --------------------------------------------------------
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366)
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Zhiliang Peng
# Based on BEiT, timm, DeiT and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'

import math
import sys
from typing import Iterable

import torch
import torch.nn as nn

import utils

def train_one_epoch(model: torch.nn.Module, 
                            data_loader: Iterable, 
                            optimizer: torch.optim.Optimizer,
                            device: torch.device, 
                            epoch: int, 
                            loss_scaler, 
                            clip_grad: float = 0,
                            log_writer=None, 
                            lr_scheduler=None, 
                            start_steps=None,
                            lr_schedule_values=None,
                            args=None,
                            ):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 10
        
    if hasattr(model.module, 'quantize'):
        try:
            model.module.quantize.reset_cluster_size(device)
            print("Reset the codebook statistic info in quantizer before each epoch")
        except:
            pass
        
    for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        # assign learning rate & weight decay for each step
        it = start_steps + step  # global training iteration
        if lr_schedule_values is not None:
            for i, param_group in enumerate(optimizer.param_groups):
                if lr_schedule_values is not None:
                    param_group["lr"] = lr_schedule_values[it] * param_group.get("lr_scale", 1.0)
        images = batch.to(device, non_blocking=True)

        with torch.cuda.amp.autocast(enabled=True):
            loss, log_loss = model(images)

        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value), force=True)
            utils.save_nan_model(args, model)
            sys.exit(1)

        optimizer.zero_grad()
        # this attribute is added by timm on one optimizer (adahessian)
        is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
        grad_norm = loss_scaler(loss, optimizer, clip_grad=clip_grad,
                                parameters=model.parameters(), create_graph=is_second_order)
        loss_scale_value = loss_scaler.state_dict()["scale"]
        
        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)
        
        new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']}
        metric_logger.update(**new_log_loss)

        min_lr = 10.
        max_lr = 0.
        for group in optimizer.param_groups:
            min_lr = min(min_lr, group["lr"])
            max_lr = max(max_lr, group["lr"])

        metric_logger.update(lr=max_lr)
        metric_logger.update(min_lr=min_lr)
        weight_decay_value = None
        for group in optimizer.param_groups:
            if group["weight_decay"] > 0:
                weight_decay_value = group["weight_decay"]
        metric_logger.update(weight_decay=weight_decay_value)
        metric_logger.update(grad_norm=grad_norm)

        if log_writer is not None:
            log_writer.update(**new_log_loss, head="train/loss")

            log_writer.update(lr=max_lr, head="opt")
            log_writer.update(min_lr=min_lr, head="opt")
            log_writer.update(weight_decay=weight_decay_value, head="opt")
            log_writer.update(grad_norm=grad_norm, head="opt")
            log_writer.update(loss_scale=loss_scale_value, head="opt")

            log_writer.set_step()

        if lr_scheduler is not None:
            lr_scheduler.step_update(start_steps + step)
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    
    # stat the codebook usage information
    if hasattr(model.module, 'quantize'):
        try:
            codebook_cluster_size = model.module.quantize._codebook.cluster_size
        except:
            codebook_cluster_size = model.module.quantize.cluster_size
        zero_cnt = (codebook_cluster_size == 0).sum().item()
        train_stat = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
        train_stat['Unused_code'] = zero_cnt
        print(f"Unused code in codebook: {zero_cnt}")
        return train_stat
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}

@torch.no_grad()
def evaluate(data_loader, model, device, log_writer=None, epoch=None, args=None):

    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Validation:'

    # switch to evaluation mode
    model.eval()

    if hasattr(model.module, 'quantize'):
        try:
            model.module.quantize.reset_cluster_size(device)
            print("Reset the codebook statistic info in quantizer before testing")
        except:
            pass

    for step, (batch, extra_info) in enumerate(metric_logger.log_every(data_loader, 10, header)):

        images = batch.to(device, non_blocking=True)
        loss, log_loss = model(images)

        metric_logger.update(loss=loss.item())

        new_log_loss = {k.split('/')[-1]:v for k, v in log_loss.items() if k not in ['total_loss']}
        metric_logger.update(**new_log_loss)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)

    # stat the codebook usage information
    if hasattr(model, 'module') and hasattr(model.module, 'quantize'):
        try:
            codebook_cluster_size = model.module.quantize._codebook.cluster_size
        except:
            codebook_cluster_size = model.module.quantize.cluster_size
        zero_cnt = (codebook_cluster_size == 0).sum().item()
        test_stat = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
        test_stat['unused_code'] = zero_cnt
        print(f"Unused code in codebook: {zero_cnt}")
        return test_stat

    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}

@torch.no_grad()
def calculate_codebook_usage(data_loader, model, device, log_writer=None, epoch=None, args=None):

    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Calculating codebook usage:'

    # switch to evaluation mode
    model.eval()
    
    codebook_num = args.codebook_n_emd
    codebook_cnt = torch.zeros(codebook_num, dtype=torch.float64).to(device)

    for step, (images, _) in enumerate(metric_logger.log_every(data_loader, 10, header)):
        images = images.to(device, non_blocking=True)

        outputs = utils.get_model(model).get_tokens(images)['token'].view(-1)
        
        outputs_gather_list = [torch.zeros_like(outputs) for _ in range(utils.get_world_size())]
        torch.distributed.all_gather(outputs_gather_list, outputs)
        all_tokens = torch.cat(outputs_gather_list, dim=0).view(-1) # [B * N * Ngpu, ]
        
        codebook_cnt += torch.bincount(all_tokens, minlength=codebook_num)

    # statistic
    zero_cnt = (codebook_cnt == 0).sum() # 0
    print(f"STAT:  {zero_cnt} tokens ({(zero_cnt / codebook_num) * 100}%) never are used in this codebook.")