File size: 8,023 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm, DINO and DeiT code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import os
import torch
import random

from torchvision import datasets, transforms

from timm.data.constants import \
    IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from transforms import RandomResizedCropAndInterpolationWithTwoPic, _pil_interp
from timm.data import create_transform, ImageDataset 

from masking_generator import MaskingGenerator
from dataset_folder import ImageFolder


class DataAugmentationForBEiT(object):
    def __init__(self, args):
        imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
        mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
        std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD

        # oringinal beit data augmentation
        self.common_transform = transforms.Compose([
            transforms.ColorJitter(0.4, 0.4, 0.4),
            transforms.RandomHorizontalFlip(p=0.5),
            RandomResizedCropAndInterpolationWithTwoPic(
                size=args.input_size, second_size=args.second_input_size, scale=(args.min_crop_scale, 1.0),
                interpolation=args.train_interpolation, second_interpolation=args.second_interpolation,
            ),
        ])

        self.patch_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std))
        ])

        self.visual_token_transform = transforms.Compose([
            transforms.ToTensor(),])                                             

        self.masked_position_generator = MaskingGenerator(
            args.window_size, num_masking_patches=args.num_mask_patches,
            max_num_patches=args.max_mask_patches_per_block,
            min_num_patches=args.min_mask_patches_per_block,
        )

    def __call__(self, image):
        for_patches, for_visual_tokens = self.common_transform(image)
        return \
            self.patch_transform(for_patches), self.visual_token_transform(for_visual_tokens), \
            self.masked_position_generator()

    def __repr__(self):
        repr = "(DataAugmentationForBEiT,\n"
        repr += "  common_transform = %s,\n" % str(self.common_transform)
        repr += "  patch_transform = %s,\n" % str(self.patch_transform)
        repr += "  visual_tokens_transform = %s,\n" % str(self.visual_token_transform)
        repr += "  Masked position generator = %s,\n" % str(self.masked_position_generator)
        repr += ")"
        return repr

def build_beit_pretraining_dataset(args):
    transform = DataAugmentationForBEiT(args)
    print("Data Aug = %s" % str(transform))
    
    return ImageFolder(args.data_path, transform=transform)

############################################### Dataset and Transforms for Tokenizer Training #########################################################

def build_vqkd_dataset(is_train, args):
    if is_train:
        t = []
        if args.color_jitter > 0.:
            t.append(transforms.ColorJitter(args.color_jitter, args.color_jitter, args.color_jitter))
        t.append(transforms.RandomResizedCrop(args.input_size, scale=(args.min_crop_scale, 1.0), interpolation=_pil_interp(args.train_interpolation)))
        t.append(transforms.RandomHorizontalFlip(0.5))
        t.append(transforms.ToTensor())
        transform = transforms.Compose(t)

    else:
        t = []
        if args.input_size < 384:
            args.crop_pct = 224 / 256
        else:
            args.crop_pct = 1.0
        size = int(args.input_size / args.crop_pct)
        t.append(
            transforms.Resize(size, interpolation=_pil_interp(args.train_interpolation)),  # to maintain same ratio w.r.t. 224 images
        )
        t.append(transforms.CenterCrop(args.input_size))
        t.append(transforms.ToTensor())
        transform = transforms.Compose(t)
    
    print(f"{'Train' if is_train else 'Test'} Data Aug: {str(transform)}")

    if args.data_set == 'image_folder':
        if is_train:
            return ImageFolder(args.data_path, transform=transform)
        else:
            if args.eval_data_path == '':
                return ImageFolder(args.data_path, transform=transform)
            else:
                return ImageFolder(args.eval_data_path, transform=transform)

    else:
        raise NotImplementedError()


############################################### Dataset and Transforms for Ft #########################################################

def build_dataset(is_train, args):
    transform = build_transform(is_train, args)

    print("Transform = ")
    if isinstance(transform, tuple):
        for trans in transform:
            print(" - - - - - - - - - - ")
            for t in trans.transforms:
                print(t)
    else:
        for t in transform.transforms:
            print(t)
    print("---------------------------")

    if args.data_set == 'CIFAR':
        dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform)
        nb_classes = 100
    elif args.data_set == 'IMNET':
        root = os.path.join(args.data_path, 'train' if is_train else 'val')
        dataset = datasets.ImageFolder(root, transform=transform)
        nb_classes = 1000
    elif args.data_set == "image_folder":
        root = args.data_path if is_train else args.eval_data_path
        index_file = args.image_folder_class_index_file
        dataset = ImageFolder(root, transform=transform, index_file=index_file)
        nb_classes = args.nb_classes
        assert len(dataset.class_to_idx) == nb_classes
    else:
        raise NotImplementedError()
    assert nb_classes == args.nb_classes
    print("Number of the class = %d" % args.nb_classes)

    return dataset, nb_classes


def build_transform(is_train, args):
    resize_im = args.input_size > 32
    imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
    mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
    std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD

    if is_train:
        # this should always dispatch to transforms_imagenet_train
        transform = create_transform(
            input_size=args.input_size,
            is_training=True,
            color_jitter=args.color_jitter,
            auto_augment=args.aa,
            interpolation=args.train_interpolation,
            re_prob=args.reprob,
            re_mode=args.remode,
            re_count=args.recount,
            mean=mean,
            std=std,
        )
        if not resize_im:
            # replace RandomResizedCropAndInterpolation with
            # RandomCrop
            transform.transforms[0] = transforms.RandomCrop(
                args.input_size, padding=4)
        return transform

    t = []
    if resize_im:
        if args.crop_pct is None:
            if args.input_size < 384:
                args.crop_pct = 224 / 256
            else:
                args.crop_pct = 1.0
        size = int(args.input_size / args.crop_pct)
        t.append(
            transforms.Resize(size, interpolation=3),  # to maintain same ratio w.r.t. 224 images
        )
        t.append(transforms.CenterCrop(args.input_size))

    t.append(transforms.ToTensor())
    t.append(transforms.Normalize(mean, std))
    return transforms.Compose(t)