Spaces:
Sleeping
Sleeping
File size: 29,241 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Encoders for text data.
* TextEncoder: base class
* SubwordTextEncoder: invertible
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from itertools import chain
import re
import time
import logging
import six
from six.moves import range # pylint: disable=redefined-builtin
# from tensor2tensor.data_generators import tokenizer
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
# Reserved tokens for things like padding and EOS symbols.
PAD = "[PAD]"
EOS = "[EOS]"
UNK = "[UNK]"
CLS = "[CLS]"
SEP = "[SEP]"
MASK = "[MASK]"
RESERVED_TOKENS = [PAD, EOS, UNK, CLS, SEP, MASK]
NUM_RESERVED_TOKENS = len(RESERVED_TOKENS)
PAD_ID = RESERVED_TOKENS.index(PAD) # Normally 0
EOS_ID = RESERVED_TOKENS.index(EOS) # Normally 1
if six.PY2:
RESERVED_TOKENS_BYTES = RESERVED_TOKENS
else:
RESERVED_TOKENS_BYTES = [bytes(PAD, "ascii"), bytes(EOS, "ascii")]
# Regular expression for unescaping token strings.
# '\u' is converted to '_'
# '\\' is converted to '\'
# '\213;' is converted to unichr(213)
_UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);")
_ESCAPE_CHARS = set(u"\\_u;0123456789")
_SPECIAL_CHARS = set(u"!\"\'#$%&*()`+,-./:;<=>?@[]^_{}~|")
# Unicode utility functions that work with Python 2 and 3
def native_to_unicode(s):
if is_unicode(s):
return s
try:
return to_unicode(s)
except UnicodeDecodeError:
res = to_unicode(s, ignore_errors=True)
logger.info("Ignoring Unicode error, outputting: %s" % res)
return res
def unicode_to_native(s):
if six.PY2:
return s.encode("utf-8") if is_unicode(s) else s
else:
return s
def is_unicode(s):
return isinstance(s, six.text_type)
def to_unicode(s, ignore_errors=False):
if is_unicode(s):
return s
error_mode = "ignore" if ignore_errors else "strict"
return s.decode("utf-8", errors=error_mode)
# def to_unicode_ignore_errors(s):
# return to_unicode(s, ignore_errors=True)
# def to_unicode_utf8(s):
# return unicode(s, "utf-8") if six.PY2 else s.decode("utf-8")
# def strip_ids(ids, ids_to_strip):
# """Strip ids_to_strip from the end ids."""
# ids = list(ids)
# while ids and ids[-1] in ids_to_strip:
# ids.pop()
# return ids
class TextEncoder(object):
"""Base class for converting from ints to/from human readable strings."""
def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS):
self._num_reserved_ids = num_reserved_ids
@property
def num_reserved_ids(self):
return self._num_reserved_ids
# def encode(self, s):
# """Transform a human-readable string into a sequence of int ids.
#
# The ids should be in the range [num_reserved_ids, vocab_size). Ids [0,
# num_reserved_ids) are reserved.
#
# EOS is not appended.
#
# Args:
# s: human-readable string to be converted.
#
# Returns:
# ids: list of integers
# """
# return [int(w) + self._num_reserved_ids for w in s.split()]
#
# def decode(self, ids, strip_extraneous=False):
# """Transform a sequence of int ids into a human-readable string.
#
# EOS is not expected in ids.
#
# Args:
# ids: list of integers to be converted.
# strip_extraneous: bool, whether to strip off extraneous tokens
# (EOS and PAD).
#
# Returns:
# s: human-readable string.
# """
# if strip_extraneous:
# ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
# return " ".join(self.decode_list(ids))
#
# def decode_list(self, ids):
# """Transform a sequence of int ids into a their string versions.
#
# This method supports transforming individual input/output ids to their
# string versions so that sequence to/from text conversions can be visualized
# in a human readable format.
#
# Args:
# ids: list of integers to be converted.
#
# Returns:
# strs: list of human-readable string.
# """
# decoded_ids = []
# for id_ in ids:
# if 0 <= id_ < self._num_reserved_ids:
# decoded_ids.append(RESERVED_TOKENS[int(id_)])
# else:
# decoded_ids.append(id_ - self._num_reserved_ids)
# return [str(d) for d in decoded_ids]
@property
def vocab_size(self):
raise NotImplementedError()
def _escape_token(token, alphabet):
"""Escape away underscores and OOV characters and append '_'.
This allows the token to be expressed as the concatenation of a list
of subtokens from the vocabulary. The underscore acts as a sentinel
which allows us to invertibly concatenate multiple such lists.
Args:
token: A unicode string to be escaped.
alphabet: A set of all characters in the vocabulary's alphabet.
Returns:
escaped_token: An escaped unicode string.
Raises:
ValueError: If the provided token is not unicode.
"""
if not isinstance(token, six.text_type):
raise ValueError("Expected string type for token, got %s" % type(token))
token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u")
ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token]
return u"".join(ret) + "_"
def _my_escape_token(token, alphabet):
if not isinstance(token, six.text_type):
raise ValueError("Expected string type for token, got %s" % type(token))
token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u")
ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token]
return "_" + u"".join(ret)
# def _unescape_token(escaped_token):
# """Inverse of _escape_token().
#
# Args:
# escaped_token: a unicode string
#
# Returns:
# token: a unicode string
# """
#
# def match(m):
# if m.group(1) is None:
# return u"_" if m.group(0) == u"\\u" else u"\\"
#
# try:
# return six.unichr(int(m.group(1)))
# except (ValueError, OverflowError) as _:
# return u"\u3013" # Unicode for undefined character.
#
# trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token
# return _UNESCAPE_REGEX.sub(match, trimmed)
class SubwordTextEncoder(TextEncoder):
"""Class for invertibly encoding text using a limited vocabulary.
Invertibly encodes a native string as a sequence of subtokens from a limited
vocabulary.
A SubwordTextEncoder is built from a corpus (so it is tailored to the text in
the corpus), and stored to a file. See text_encoder_build_subword.py.
It can then be loaded and used to encode/decode any text.
Encoding has four phases:
1. Tokenize into a list of tokens. Each token is a unicode string of either
all alphanumeric characters or all non-alphanumeric characters. We drop
tokens consisting of a single space that are between two alphanumeric
tokens.
2. Escape each token. This escapes away special and out-of-vocabulary
characters, and makes sure that each token ends with an underscore, and
has no other underscores.
3. Represent each escaped token as a the concatenation of a list of subtokens
from the limited vocabulary. Subtoken selection is done greedily from
beginning to end. That is, we construct the list in order, always picking
the longest subtoken in our vocabulary that matches a prefix of the
remaining portion of the encoded token.
4. Concatenate these lists. This concatenation is invertible due to the
fact that the trailing underscores indicate when one list is finished.
"""
def __init__(self, filename=None):
"""Initialize and read from a file, if provided.
Args:
filename: filename from which to read vocab. If None, do not load a
vocab
"""
self._alphabet = set()
# self.filename = filename
# if filename is not None:
# self._load_from_file(filename)
super(SubwordTextEncoder, self).__init__()
# def encode(self, s):
# """Converts a native string to a list of subtoken ids.
#
# Args:
# s: a native string.
# Returns:
# a list of integers in the range [0, vocab_size)
# """
# return self._tokens_to_subtoken_ids(
# tokenizer.encode(native_to_unicode(s)))
#
# def encode_without_tokenizing(self, token_text):
# """Converts string to list of subtoken ids without calling tokenizer.
#
# This treats `token_text` as a single token and directly converts it
# to subtoken ids. This may be useful when the default tokenizer doesn't
# do what we want (e.g., when encoding text with tokens composed of lots of
# nonalphanumeric characters). It is then up to the caller to make sure that
# raw text is consistently converted into tokens. Only use this if you are
# sure that `encode` doesn't suit your needs.
#
# Args:
# token_text: A native string representation of a single token.
# Returns:
# A list of subword token ids; i.e., integers in the range [0, vocab_size).
# """
# return self._tokens_to_subtoken_ids([native_to_unicode(token_text)])
# def decode(self, ids, strip_extraneous=False):
# """Converts a sequence of subtoken ids to a native string.
#
# Args:
# ids: a list of integers in the range [0, vocab_size)
# strip_extraneous: bool, whether to strip off extraneous tokens
# (EOS and PAD).
#
# Returns:
# a native string
# """
# if strip_extraneous:
# ids = strip_ids(ids, list(range(self._num_reserved_ids or 0)))
# return unicode_to_native(
# tokenizer.decode(self._subtoken_ids_to_tokens(ids)))
# def decode_list(self, ids):
# return [self._subtoken_id_to_subtoken_string(s) for s in ids]
@property
def vocab_size(self):
"""The subtoken vocabulary size."""
return len(self._all_subtoken_strings)
# def _tokens_to_subtoken_ids(self, tokens):
# """Converts a list of tokens to a list of subtoken ids.
#
# Args:
# tokens: a list of strings.
# Returns:
# a list of integers in the range [0, vocab_size)
# """
# ret = []
# for token in tokens:
# ret.extend(self._token_to_subtoken_ids(token))
# return ret
# def _token_to_subtoken_ids(self, token):
# """Converts token to a list of subtoken ids.
#
# Args:
# token: a string.
# Returns:
# a list of integers in the range [0, vocab_size)
# """
# cache_location = hash(token) % self._cache_size
# cache_key, cache_value = self._cache[cache_location]
# if cache_key == token:
# return cache_value
# ret = self._escaped_token_to_subtoken_ids(
# _escape_token(token, self._alphabet))
# self._cache[cache_location] = (token, ret)
# return ret
# def _subtoken_ids_to_tokens(self, subtokens):
# """Converts a list of subtoken ids to a list of tokens.
#
# Args:
# subtokens: a list of integers in the range [0, vocab_size)
# Returns:
# a list of strings.
# """
# concatenated = "".join(
# [self._subtoken_id_to_subtoken_string(s) for s in subtokens])
# split = concatenated.split("_")
# ret = []
# for t in split:
# if t:
# unescaped = _unescape_token(t + "_")
# if unescaped:
# ret.append(unescaped)
# return ret
# def _subtoken_id_to_subtoken_string(self, subtoken):
# """Converts a subtoken integer ID to a subtoken string."""
# if 0 <= subtoken < self.vocab_size:
# return self._all_subtoken_strings[subtoken]
# return u""
def _escaped_token_to_subtoken_strings(self, escaped_token):
"""Converts an escaped token string to a list of subtoken strings.
Args:
escaped_token: An escaped token as a unicode string.
Returns:
A list of subtokens as unicode strings.
"""
# NOTE: This algorithm is greedy; it won't necessarily produce the "best"
# list of subtokens.
ret = []
start = 0
token_len = len(escaped_token)
while start < token_len:
for end in range(
min(token_len, start + self._max_subtoken_len), start, -1):
subtoken = escaped_token[start:end]
if subtoken in self._subtoken_string_to_id:
ret.append(subtoken)
start = end
break
else: # Did not break
# If there is no possible encoding of the escaped token then one of the
# characters in the token is not in the alphabet. This should be
# impossible and would be indicative of a bug.
assert False, "Token substring not found in subtoken vocabulary."
return ret
# def _escaped_token_to_subtoken_ids(self, escaped_token):
# """Converts an escaped token string to a list of subtoken IDs.
#
# Args:
# escaped_token: An escaped token as a unicode string.
# Returns:
# A list of subtoken IDs as integers.
# """
# return [
# self._subtoken_string_to_id[subtoken]
# for subtoken in self._escaped_token_to_subtoken_strings(escaped_token)
# ]
# @classmethod
# def build_from_generator(cls,
# generator,
# target_size,
# max_subtoken_length=None,
# reserved_tokens=None):
# """Builds a SubwordTextEncoder from the generated text.
#
# Args:
# generator: yields text.
# target_size: int, approximate vocabulary size to create.
# max_subtoken_length: Maximum length of a subtoken. If this is not set,
# then the runtime and memory use of creating the vocab is quadratic in
# the length of the longest token. If this is set, then it is instead
# O(max_subtoken_length * length of longest token).
# reserved_tokens: List of reserved tokens. The global variable
# `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
# argument is `None`, it will use `RESERVED_TOKENS`.
#
# Returns:
# SubwordTextEncoder with `vocab_size` approximately `target_size`.
# """
# token_counts = collections.defaultdict(int)
# for item in generator:
# for tok in tokenizer.encode(native_to_unicode(item)):
# token_counts[tok] += 1
# encoder = cls.build_to_target_size(
# target_size, token_counts, 1, 1e3,
# max_subtoken_length=max_subtoken_length,
# reserved_tokens=reserved_tokens)
# return encoder
#
@classmethod
def build_to_target_size(cls,
target_size,
token_counts,
min_val,
max_val,
max_subtoken_length=None,
reserved_tokens=None,
num_iterations=4):
"""Builds a SubwordTextEncoder that has `vocab_size` near `target_size`.
Uses simple recursive binary search to find a minimum token count that most
closely matches the `target_size`.
Args:
target_size: Desired vocab_size to approximate.
token_counts: A dictionary of token counts, mapping string to int.
min_val: An integer; lower bound for the minimum token count.
max_val: An integer; upper bound for the minimum token count.
max_subtoken_length: Maximum length of a subtoken. If this is not set,
then the runtime and memory use of creating the vocab is quadratic in
the length of the longest token. If this is set, then it is instead
O(max_subtoken_length * length of longest token).
reserved_tokens: List of reserved tokens. The global variable
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
argument is `None`, it will use `RESERVED_TOKENS`.
num_iterations: An integer; how many iterations of refinement.
Returns:
A SubwordTextEncoder instance.
Raises:
ValueError: If `min_val` is greater than `max_val`.
"""
if min_val > max_val:
raise ValueError("Lower bound for the minimum token count "
"is greater than the upper bound.")
if target_size < 1:
raise ValueError("Target size must be positive.")
if reserved_tokens is None:
reserved_tokens = RESERVED_TOKENS
def bisect(min_val, max_val):
"""Bisection to find the right size."""
present_count = (max_val + min_val) // 2
logger.info("Trying min_count %d" % present_count)
subtokenizer = cls()
subtokenizer.build_from_token_counts(
token_counts, present_count, num_iterations,
max_subtoken_length=max_subtoken_length,
reserved_tokens=reserved_tokens)
# Being within 1% of the target size is ok.
is_ok = abs(subtokenizer.vocab_size - target_size) * 100 < target_size
# If min_val == max_val, we can't do any better than this.
if is_ok or min_val >= max_val or present_count < 2:
return subtokenizer
if subtokenizer.vocab_size > target_size:
other_subtokenizer = bisect(present_count + 1, max_val)
else:
other_subtokenizer = bisect(min_val, present_count - 1)
if other_subtokenizer is None:
return subtokenizer
if (abs(other_subtokenizer.vocab_size - target_size) <
abs(subtokenizer.vocab_size - target_size)):
return other_subtokenizer
return subtokenizer
return bisect(min_val, max_val)
def build_from_token_counts(self,
token_counts,
min_count,
num_iterations=4,
reserved_tokens=None,
max_subtoken_length=None):
"""Train a SubwordTextEncoder based on a dictionary of word counts.
Args:
token_counts: a dictionary of Unicode strings to int.
min_count: an integer - discard subtokens with lower counts.
num_iterations: an integer. how many iterations of refinement.
reserved_tokens: List of reserved tokens. The global variable
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
argument is `None`, it will use `RESERVED_TOKENS`.
max_subtoken_length: Maximum length of a subtoken. If this is not set,
then the runtime and memory use of creating the vocab is quadratic in
the length of the longest token. If this is set, then it is instead
O(max_subtoken_length * length of longest token).
Raises:
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
is not clear what the space is being reserved for, or when it will be
filled in.
"""
# import pudb; pu.db
if reserved_tokens is None:
reserved_tokens = RESERVED_TOKENS
else:
# There is not complete freedom in replacing RESERVED_TOKENS.
new_reserved_tokens = RESERVED_TOKENS
for token in reserved_tokens:
if token in new_reserved_tokens:
continue
new_reserved_tokens.append(token)
reserved_tokens = new_reserved_tokens
for default, proposed in zip(RESERVED_TOKENS, reserved_tokens):
if default != proposed:
raise ValueError("RESERVED_TOKENS must be a prefix of "
"reserved_tokens.")
start_time = time.time()
#import pudb; pu.db
# Initialize the alphabet. Note, this must include reserved tokens or it can
# result in encoding failures. Remove RESERVED_TOKENS.
alphabet_tokens = chain(six.iterkeys(token_counts),
[native_to_unicode(t) for t in reserved_tokens[len(RESERVED_TOKENS):]])
# all alphabets in tokens
self._init_alphabet_from_tokens(alphabet_tokens)
# Bootstrap the initial list of subtokens with the characters from the
# alphabet plus the escaping characters.
self._init_subtokens_from_list(list(self._alphabet),
reserved_tokens=reserved_tokens)
# We build iteratively. On each iteration, we segment all the words,
# then count the resulting potential subtokens, keeping the ones
# with high enough counts for our new vocabulary.
if min_count < 1:
min_count = 1
for i in range(num_iterations):
#logger.info("Iteration {0}".format(i))
# Collect all substrings of the encoded token that break along current
# subtoken boundaries.
subtoken_counts = collections.defaultdict(int)
for token, count in six.iteritems(token_counts):
iter_start_time = time.time()
# escaped_token = _escape_token(token, self._alphabet) # added "_" at the end
escaped_token = _my_escape_token(token, self._alphabet)
subtokens = self._escaped_token_to_subtoken_strings(escaped_token)
# print(escaped_token)
# print(subtokens)
# excaped_token '_1234' -> subtoknes ['_12', '34'] (ex)
# '_1234':100 -> '_', '_1', '_12', '_123', '_1234','3', '34' :+= 100,
start = 0
for subtoken in subtokens:
last_position = len(escaped_token) + 1
if max_subtoken_length is not None:
last_position = min(last_position, start + max_subtoken_length)
for end in range(start + 1, last_position):
new_subtoken = escaped_token[start:end]
subtoken_counts[new_subtoken] += count
start += len(subtoken)
iter_time_secs = time.time() - iter_start_time
if iter_time_secs > 0.1:
logger.info(u"Processing token [{0}] took {1} seconds, consider "
"setting Text2TextProblem.max_subtoken_length to a "
"smaller value.".format(token, iter_time_secs))
# print(len(subtoken_counts))
# Array of sets of candidate subtoken strings, by length.
len_to_subtoken_strings = []
for subtoken_string, count in six.iteritems(subtoken_counts):
lsub = len(subtoken_string)
if count >= min_count:
while len(len_to_subtoken_strings) <= lsub:
len_to_subtoken_strings.append(set())
len_to_subtoken_strings[lsub].add(subtoken_string)
# Consider the candidates longest to shortest, so that if we accept
# a longer subtoken string, we can decrement the counts of its prefixes.
new_subtoken_strings_with_count = []
for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1):
subtoken_strings = len_to_subtoken_strings[lsub]
for subtoken_string in subtoken_strings:
count = subtoken_counts[subtoken_string]
if count >= min_count:
# Exclude alphabet tokens here, as they must be included later,
# explicitly, regardless of count.
if subtoken_string not in self._alphabet:
new_subtoken_strings_with_count.append((count, subtoken_string))
for l in range(1, lsub):
subtoken_counts[subtoken_string[:l]] -= count
# Include the alphabet explicitly to guarantee all strings are encodable.
new_subtoken_strings_with_count.extend((subtoken_counts.get(a, 0), a)
for a in self._alphabet)
new_subtoken_strings_with_count.sort(reverse=True)
# Reinitialize to the candidate vocabulary.
new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings_with_count]
if reserved_tokens:
# escaped_reserved_tokens = [
# _escape_token(native_to_unicode(t), self._alphabet)
# for t in reserved_tokens
# ]
# new_subtoken_strings = escaped_reserved_tokens + new_subtoken_strings
new_subtoken_strings = reserved_tokens + new_subtoken_strings
new_subtoken_strings = list(set(new_subtoken_strings))
self._init_subtokens_from_list(new_subtoken_strings)
#logger.info("vocab_size = %d" % self.vocab_size)
# print("vocab_size = %d" % self.vocab_size)
# print(self.vocab_size)
self.subtokens_with_counts = new_subtoken_strings_with_count
# Frequency of "_" is high.
# So remove from current position and add to the last.
new_subtoken_strings.remove("_")
new_subtoken_strings.insert(len(new_subtoken_strings), "_")
oov_list = []
for idx, subtoken in enumerate(new_subtoken_strings):
if subtoken.startswith("_") and subtoken != "_":
new_subtoken_strings[idx] = subtoken[1:]
elif subtoken[0] in self._alphabet and subtoken not in reserved_tokens:
new_subtoken_strings[idx] = "##" + subtoken
else:
oov_list.append(subtoken)
new_subtoken_strings.extend(char for char in self._alphabet
if char not in new_subtoken_strings)
# print(new_subtoken_strings)
# print(oov_list)
new_subtoken_strings = list(set(new_subtoken_strings))
self._init_subtokens_from_list(new_subtoken_strings)
#logger.info("vocab_size = %d" % self.vocab_size)
logger.info("total vocab size : {}, {} seconds elapsed ".format(self.vocab_size, time.time() - start_time))
# @property
# def all_subtoken_strings(self):
# return tuple(self._all_subtoken_strings)
#
# def dump(self):
# """Debugging dump of the current subtoken vocabulary."""
# subtoken_strings = [(i, s)
# for s, i in six.iteritems(self._subtoken_string_to_id)]
# print(u", ".join(u"{0} : '{1}'".format(i, s)
# for i, s in sorted(subtoken_strings)))
def _init_subtokens_from_list(self, subtoken_strings, reserved_tokens=None):
"""Initialize token information from a list of subtoken strings.
Args:
subtoken_strings: a list of subtokens
reserved_tokens: List of reserved tokens. We must have `reserved_tokens`
as None or the empty list, or else the global variable `RESERVED_TOKENS`
must be a prefix of `reserved_tokens`.
Raises:
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
is not clear what the space is being reserved for, or when it will be
filled in.
"""
if reserved_tokens is None:
reserved_tokens = []
if reserved_tokens:
self._all_subtoken_strings = reserved_tokens + subtoken_strings
else:
self._all_subtoken_strings = subtoken_strings
# we remember the maximum length of any subtoken to avoid having to
# check arbitrarily long strings.
self._max_subtoken_len = max([len(s) for s in subtoken_strings])
self._subtoken_string_to_id = {
s: i + len(reserved_tokens)
for i, s in enumerate(subtoken_strings) if s
}
# Initialize the cache to empty.
self._cache_size = 2 ** 20
self._cache = [(None, None)] * self._cache_size
def _init_alphabet_from_tokens(self, tokens):
"""Initialize alphabet from an iterable of token or subtoken strings."""
# Include all characters from all tokens in the alphabet to guarantee that
# any token can be encoded. Additionally, include all escaping characters.
self._alphabet = {c for token in tokens for c in token}
self._alphabet |= _ESCAPE_CHARS
self._alphabet |= _SPECIAL_CHARS
# def _load_from_file_object(self, f):
# """Load from a file object.
#
# Args:
# f: File object to load vocabulary from
# """
# subtoken_strings = []
# for line in f:
# s = line.strip()
# # Some vocab files wrap words in single quotes, but others don't
# if ((s.startswith("'") and s.endswith("'")) or
# (s.startswith("\"") and s.endswith("\""))):
# s = s[1:-1]
# subtoken_strings.append(native_to_unicode(s))
# self._init_subtokens_from_list(subtoken_strings)
# self._init_alphabet_from_tokens(subtoken_strings)
#
# def _load_from_file(self, filename):
# """Load from a vocab file."""
# if not tf.gfile.Exists(filename):
# raise ValueError("File %s not found" % filename)
# with tf.gfile.Open(filename) as f:
# self._load_from_file_object(f)
def store_to_file(self, filename, add_single_quotes=True):
#with tf.gfile.Open(filename, "w") as f:
with open(filename, "w") as f:
for subtoken_string in self._all_subtoken_strings:
if add_single_quotes:
f.write("'" + unicode_to_native(subtoken_string) + "'\n")
else:
f.write(unicode_to_native(subtoken_string) + "\n")
def store_to_file_with_counts(self, filename):
# with tf.gfile.Open(filename, "w") as f:
with open(filename, "w") as f:
for subtoken_string, count in self.subtokens_with_counts:
f.write(unicode_to_native(subtoken_string + "\t" + str(count)) + "\n")
|