TruthLens commited on
Commit
d0c4209
·
verified ·
1 Parent(s): f1e1a3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -11,17 +11,19 @@ app = Flask(__name__)
11
  upload_folder = os.path.join('static', 'uploads')
12
  os.makedirs(upload_folder, exist_ok=True)
13
 
14
- # Load Updated Fake News Detection Pipelines
15
  news_models = {
16
- "fakenewsdetector": pipeline("text-classification", model="fakenewsdetector/bert-fake-news")
 
 
17
  }
18
 
19
- # Load Image Models for AI vs. Human Detection
20
- clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
21
- clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
22
 
23
  ai_image_models = {
24
- "openai": clip_model
25
  }
26
 
27
  # Image transformation pipeline
@@ -54,8 +56,9 @@ HTML_TEMPLATE = """
54
  <textarea name="text" placeholder="Enter news text..." required></textarea>
55
  <label for="model">Select Fake News Model:</label>
56
  <select name="model" required>
57
- <option value="newsverify">NewsVerify (RoBERTa)</option>
58
- <option value="fakenewsdetector">FakeNewsDetector (BERT)</option>
 
59
  </select>
60
  <button type="submit">Detect News Authenticity</button>
61
  </form>
@@ -115,7 +118,7 @@ def detect_image():
115
  inputs = clip_processor(images=img, return_tensors="pt")
116
 
117
  with torch.no_grad():
118
- image_features = ai_image_models["openai"].get_image_features(**inputs)
119
 
120
  prediction = "AI-Generated" if torch.mean(image_features).item() > 0 else "Human-Created"
121
 
@@ -126,4 +129,3 @@ def detect_image():
126
 
127
  if __name__ == "__main__":
128
  app.run(host="0.0.0.0", port=7860) # Suitable for Hugging Face Spaces
129
-
 
11
  upload_folder = os.path.join('static', 'uploads')
12
  os.makedirs(upload_folder, exist_ok=True)
13
 
14
+ # Updated Fake News Detection Models
15
  news_models = {
16
+ "mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
17
+ "liam168": pipeline("text-classification", model="liam168/fake-news-bert-base-uncased"),
18
+ "distilbert": pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
19
  }
20
 
21
+ # Updated Image Models for AI vs. Human Detection
22
+ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
23
+ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
24
 
25
  ai_image_models = {
26
+ "clip-vit-base-patch32": clip_model
27
  }
28
 
29
  # Image transformation pipeline
 
56
  <textarea name="text" placeholder="Enter news text..." required></textarea>
57
  <label for="model">Select Fake News Model:</label>
58
  <select name="model" required>
59
+ <option value="mrm8488">MRM8488 (BERT-Tiny)</option>
60
+ <option value="liam168">Liam168 (BERT)</option>
61
+ <option value="distilbert">DistilBERT (SST-2)</option>
62
  </select>
63
  <button type="submit">Detect News Authenticity</button>
64
  </form>
 
118
  inputs = clip_processor(images=img, return_tensors="pt")
119
 
120
  with torch.no_grad():
121
+ image_features = ai_image_models["clip-vit-base-patch32"].get_image_features(**inputs)
122
 
123
  prediction = "AI-Generated" if torch.mean(image_features).item() > 0 else "Human-Created"
124
 
 
129
 
130
  if __name__ == "__main__":
131
  app.run(host="0.0.0.0", port=7860) # Suitable for Hugging Face Spaces