TruthLens commited on
Commit
a911010
·
verified ·
1 Parent(s): 7633b69

Upload app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +139 -0
app (1).py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from flask import Flask, request, render_template_string
3
+ from PIL import Image
4
+ import torch
5
+ from torchvision import models, transforms
6
+ import requests
7
+
8
+ app = Flask(__name__)
9
+
10
+ # Create the 'static/uploads' folder if it doesn't exist
11
+ upload_folder = os.path.join('static', 'uploads')
12
+ os.makedirs(upload_folder, exist_ok=True)
13
+
14
+ # Download ImageNet class labels
15
+ imagenet_class_labels_url = 'https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json'
16
+ response = requests.get(imagenet_class_labels_url)
17
+ imagenet_class_labels = response.json()
18
+
19
+ # Load pre-trained ResNet50 for object classification
20
+ resnet50_model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
21
+ resnet50_model.eval()
22
+
23
+ # Load ResNet18 for AI vs. Human detection (Use custom-trained weights if available)
24
+ resnet18_model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
25
+ resnet18_model.eval()
26
+
27
+ # Image transformation pipeline
28
+ transform = transforms.Compose([
29
+ transforms.Resize((224, 224)),
30
+ transforms.ToTensor(),
31
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
32
+ ])
33
+
34
+ # HTML Template with improved UI and interpretation
35
+ HTML_TEMPLATE = """
36
+ <!DOCTYPE html>
37
+ <html lang="en">
38
+ <head>
39
+ <meta charset="UTF-8">
40
+ <title>AI & Image Detection</title>
41
+ <style>
42
+ body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
43
+ .container { background: white; padding: 30px; border-radius: 12px; max-width: 750px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
44
+ h1, h2 { color: #333; }
45
+ textarea, input[type="file"] { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
46
+ button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; }
47
+ button:hover { background-color: #45a049; }
48
+ .result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
49
+ ul { text-align: left; }
50
+ </style>
51
+ </head>
52
+ <body>
53
+ <div class="container">
54
+ <h1>📰 Fake News & Image Detection</h1>
55
+ <form method="POST" action="/detect">
56
+ <textarea name="text" placeholder="Enter news text..." required></textarea>
57
+ <button type="submit">Detect News Authenticity</button>
58
+ </form>
59
+
60
+ <h1>🖼️ Upload Image for Detection</h1>
61
+ <form method="POST" action="/detect_image" enctype="multipart/form-data">
62
+ <input type="file" name="image" required>
63
+ <button type="submit">Upload and Analyze</button>
64
+ </form>
65
+
66
+ <div style="margin-top: 30px;">
67
+ <h2>🤖 What is ResNet50?</h2>
68
+ <p>ResNet50 is a 50-layer deep convolutional neural network designed for image classification tasks. It can recognize thousands of objects from the ImageNet dataset.</p>
69
+ </div>
70
+
71
+ {% if ai_prediction %}
72
+ <div class="result">
73
+ <h2>🧠 AI vs. Human Detection Result:</h2>
74
+ <p>{{ ai_prediction }}</p>
75
+ <p><strong>Interpretation:</strong> This result indicates whether the uploaded image was likely created by AI or a human. Higher confidence suggests stronger model certainty.</p>
76
+ </div>
77
+ {% endif %}
78
+
79
+ {% if classification_results %}
80
+ <div class="result">
81
+ <h2>📦 Object Classification Results (ResNet50):</h2>
82
+ <ul>
83
+ {% for result in classification_results %}
84
+ <li>• {{ result.label }} ({{ (result.score * 100) | round(2) }}%) - Detected object category.</li>
85
+ {% endfor %}
86
+ </ul>
87
+ <p><strong>Interpretation:</strong> The model predicts the most probable object categories in the uploaded image along with confidence scores. Higher percentages indicate stronger matches.</p>
88
+ </div>
89
+ {% endif %}
90
+ </div>
91
+ </body>
92
+ </html>
93
+ """
94
+
95
+ @app.route("/", methods=["GET"])
96
+ def home():
97
+ return render_template_string(HTML_TEMPLATE)
98
+
99
+ @app.route("/detect", methods=["POST"])
100
+ def detect():
101
+ text = request.form.get("text")
102
+ final_label = "REAL" if "trusted" in text.lower() else "FAKE" # Placeholder logic
103
+ return render_template_string(HTML_TEMPLATE, ai_prediction=f"News is {final_label}.", classification_results=None)
104
+
105
+ @app.route("/detect_image", methods=["POST"])
106
+ def detect_image():
107
+ if "image" not in request.files:
108
+ return "No image uploaded.", 400
109
+
110
+ file = request.files["image"]
111
+ img_path = os.path.join(upload_folder, file.filename)
112
+ file.save(img_path)
113
+
114
+ img = Image.open(img_path).convert("RGB")
115
+ img_tensor = transform(img).unsqueeze(0)
116
+
117
+ # AI vs. Human detection
118
+ with torch.no_grad():
119
+ ai_output = resnet18_model(img_tensor)
120
+ ai_confidence = torch.softmax(ai_output, dim=1).max().item()
121
+ ai_label = "AI-Generated" if ai_confidence > 0.55 else "Human-Created"
122
+
123
+ # Object classification with ResNet50
124
+ with torch.no_grad():
125
+ outputs = resnet50_model(img_tensor)
126
+ probs = torch.softmax(outputs, dim=1)[0]
127
+ top5_probs, top5_indices = torch.topk(probs, 5)
128
+ classification_results = [
129
+ {"label": imagenet_class_labels[idx], "score": prob.item()} for idx, prob in zip(top5_indices, top5_probs)
130
+ ]
131
+
132
+ return render_template_string(
133
+ HTML_TEMPLATE,
134
+ ai_prediction=f"{ai_label} (Confidence: {(ai_confidence * 100):.2f}%)",
135
+ classification_results=classification_results
136
+ )
137
+
138
+ if __name__ == "__main__":
139
+ app.run(host="0.0.0.0", port=7860) # Updated for Hugging Face Spaces (no ngrok required)