Update app.py
Browse files
app.py
CHANGED
@@ -14,18 +14,14 @@ os.makedirs(upload_folder, exist_ok=True)
|
|
14 |
# Updated Fake News Detection Models
|
15 |
news_models = {
|
16 |
"mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
|
17 |
-
"
|
18 |
-
"
|
19 |
}
|
20 |
|
21 |
-
# Updated Image
|
22 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
|
25 |
-
ai_image_models = {
|
26 |
-
"clip-vit-base-patch32": clip_model
|
27 |
-
}
|
28 |
-
|
29 |
# Image transformation pipeline
|
30 |
transform = transforms.Compose([
|
31 |
transforms.Resize((224, 224)),
|
@@ -33,7 +29,7 @@ transform = transforms.Compose([
|
|
33 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
34 |
])
|
35 |
|
36 |
-
# HTML Template with Model Selection
|
37 |
HTML_TEMPLATE = """
|
38 |
<!DOCTYPE html>
|
39 |
<html lang="en">
|
@@ -42,7 +38,7 @@ HTML_TEMPLATE = """
|
|
42 |
<title>AI & News Detection</title>
|
43 |
<style>
|
44 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
45 |
-
.container { background: white; padding: 30px; border-radius: 12px; max-width:
|
46 |
textarea, select { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
|
47 |
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; margin-top: 10px; }
|
48 |
button:hover { background-color: #45a049; }
|
@@ -57,8 +53,8 @@ HTML_TEMPLATE = """
|
|
57 |
<label for="model">Select Fake News Model:</label>
|
58 |
<select name="model" required>
|
59 |
<option value="mrm8488">MRM8488 (BERT-Tiny)</option>
|
60 |
-
<option value="
|
61 |
-
<option value="
|
62 |
</select>
|
63 |
<button type="submit">Detect News Authenticity</button>
|
64 |
</form>
|
@@ -80,6 +76,7 @@ HTML_TEMPLATE = """
|
|
80 |
<div class="result">
|
81 |
<h2>📷 Image Detection Result:</h2>
|
82 |
<p>{{ image_prediction }}</p>
|
|
|
83 |
</div>
|
84 |
{% endif %}
|
85 |
</div>
|
@@ -118,13 +115,18 @@ def detect_image():
|
|
118 |
inputs = clip_processor(images=img, return_tensors="pt")
|
119 |
|
120 |
with torch.no_grad():
|
121 |
-
image_features =
|
|
|
|
|
122 |
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
return render_template_string(
|
126 |
HTML_TEMPLATE,
|
127 |
-
image_prediction=
|
128 |
)
|
129 |
|
130 |
if __name__ == "__main__":
|
|
|
14 |
# Updated Fake News Detection Models
|
15 |
news_models = {
|
16 |
"mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
|
17 |
+
"google-electra": pipeline("text-classification", model="google/electra-base-discriminator"),
|
18 |
+
"bert-base": pipeline("text-classification", model="bert-base-uncased")
|
19 |
}
|
20 |
|
21 |
+
# Updated Image Model for AI vs. Human Detection
|
22 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
|
|
|
|
|
|
|
|
|
25 |
# Image transformation pipeline
|
26 |
transform = transforms.Compose([
|
27 |
transforms.Resize((224, 224)),
|
|
|
29 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
30 |
])
|
31 |
|
32 |
+
# HTML Template with Model Selection and Explanations
|
33 |
HTML_TEMPLATE = """
|
34 |
<!DOCTYPE html>
|
35 |
<html lang="en">
|
|
|
38 |
<title>AI & News Detection</title>
|
39 |
<style>
|
40 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
41 |
+
.container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
42 |
textarea, select { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
|
43 |
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; margin-top: 10px; }
|
44 |
button:hover { background-color: #45a049; }
|
|
|
53 |
<label for="model">Select Fake News Model:</label>
|
54 |
<select name="model" required>
|
55 |
<option value="mrm8488">MRM8488 (BERT-Tiny)</option>
|
56 |
+
<option value="google-electra">Google Electra (Base Discriminator)</option>
|
57 |
+
<option value="bert-base">BERT-Base Uncased</option>
|
58 |
</select>
|
59 |
<button type="submit">Detect News Authenticity</button>
|
60 |
</form>
|
|
|
76 |
<div class="result">
|
77 |
<h2>📷 Image Detection Result:</h2>
|
78 |
<p>{{ image_prediction }}</p>
|
79 |
+
<p><strong>Explanation:</strong> The model compares visual features against known AI-generated and human-created image patterns. High feature uniformity often indicates AI generation, while more varied features suggest human-created content.</p>
|
80 |
</div>
|
81 |
{% endif %}
|
82 |
</div>
|
|
|
115 |
inputs = clip_processor(images=img, return_tensors="pt")
|
116 |
|
117 |
with torch.no_grad():
|
118 |
+
image_features = clip_model.get_image_features(**inputs)
|
119 |
+
mean_feature_value = torch.mean(image_features).item()
|
120 |
+
prediction = "AI-Generated" if mean_feature_value > 0 else "Human-Created"
|
121 |
|
122 |
+
explanation = (
|
123 |
+
f"Prediction: {prediction} (Feature Value: {mean_feature_value:.4f}). "
|
124 |
+
"Higher feature uniformity suggests AI generation, while more variability indicates human creation."
|
125 |
+
)
|
126 |
|
127 |
return render_template_string(
|
128 |
HTML_TEMPLATE,
|
129 |
+
image_prediction=explanation
|
130 |
)
|
131 |
|
132 |
if __name__ == "__main__":
|