Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,45 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import yt_dlp
|
3 |
-
import torch
|
4 |
from transformers import pipeline
|
|
|
|
|
|
|
5 |
|
6 |
st.set_page_config(page_title="Video Deepfake Detector", layout="centered")
|
|
|
7 |
|
8 |
-
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
return
|
18 |
|
19 |
-
|
20 |
def load_model():
|
21 |
-
return pipeline("image-classification", model="
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
import cv2
|
26 |
-
cap = cv2.VideoCapture(video_path)
|
27 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
28 |
-
step = max(frame_count // 5, 1)
|
29 |
-
results = []
|
30 |
-
|
31 |
-
for i in range(0, frame_count, step):
|
32 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
33 |
-
ret, frame = cap.read()
|
34 |
-
if not ret:
|
35 |
-
continue
|
36 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
37 |
-
prediction = model(rgb_frame)
|
38 |
-
results.append(prediction[0])
|
39 |
-
cap.release()
|
40 |
return results
|
41 |
|
42 |
-
|
43 |
-
st.
|
44 |
-
|
45 |
-
|
46 |
-
if
|
47 |
-
|
48 |
-
try:
|
49 |
-
video_path = download_video(video_url)
|
50 |
model = load_model()
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
st.write(f"Frame {idx + 1}: {pred['label']} with confidence {pred['score']:.2f}")
|
56 |
-
except Exception as e:
|
57 |
-
st.error(f"Error: {e}")
|
|
|
1 |
+
from pytube import YouTube
|
2 |
import streamlit as st
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
|
8 |
st.set_page_config(page_title="Video Deepfake Detector", layout="centered")
|
9 |
+
st.title("🎥 Video Deepfake Detector")
|
10 |
|
11 |
+
@st.cache_data
|
12 |
+
def get_thumbnail(url):
|
13 |
+
try:
|
14 |
+
yt = YouTube(url)
|
15 |
+
response = requests.get(yt.thumbnail_url)
|
16 |
+
if response.status_code == 200:
|
17 |
+
return Image.open(BytesIO(response.content))
|
18 |
+
except Exception as e:
|
19 |
+
st.error(f"Error fetching thumbnail: {e}")
|
20 |
+
return None
|
21 |
|
22 |
+
@st.cache_resource
|
23 |
def load_model():
|
24 |
+
return pipeline("image-classification", model="facebook/deit-base-distilled-patch16-224")
|
25 |
|
26 |
+
def detect_deepfake(image, model):
|
27 |
+
results = model(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return results
|
29 |
|
30 |
+
def main():
|
31 |
+
video_url = st.text_input("Enter YouTube Video URL:")
|
32 |
+
if st.button("Analyze") and video_url:
|
33 |
+
thumbnail = get_thumbnail(video_url)
|
34 |
+
if thumbnail:
|
35 |
+
st.image(thumbnail, caption="Video Thumbnail", use_container_width=True)
|
|
|
|
|
36 |
model = load_model()
|
37 |
+
results = detect_deepfake(thumbnail, model)
|
38 |
+
st.subheader("Detection Results:")
|
39 |
+
for res in results:
|
40 |
+
st.write(f"{res['label']}: {res['score']:.4f}")
|
41 |
+
else:
|
42 |
+
st.warning("Unable to fetch thumbnail. Please check the video URL.")
|
43 |
|
44 |
+
if __name__ == "__main__":
|
45 |
+
main()
|
|
|
|
|
|