File size: 26,179 Bytes
96d3362
 
 
718d231
96d3362
 
bc2a174
 
 
96d3362
bc2a174
96d3362
 
 
 
 
 
 
 
 
bc2a174
96d3362
 
 
 
 
ba42f25
eeff5a7
bee3456
f0f4ea0
5a28255
48ac9c9
62e2909
8c5938d
a5b1363
de3a3ea
aa31d18
a3c347f
8c5938d
 
a3c347f
8c5938d
 
de3a3ea
 
48ae6b7
de3a3ea
48ae6b7
8c5938d
de3a3ea
00765ea
18edfec
96d3362
18edfec
 
 
 
eeff5a7
aa31d18
b1c0e1c
 
18edfec
b1c0e1c
18edfec
 
b1c0e1c
48ac9c9
b1c0e1c
 
 
eeff5a7
a3eabb7
 
 
 
 
48ac9c9
 
 
eeff5a7
a3c347f
18edfec
de3a3ea
6354e98
96d3362
 
718d231
96d3362
 
 
09bf063
96d3362
 
 
ef00b69
718d231
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718d231
 
 
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718d231
 
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718d231
 
 
 
 
96d3362
718d231
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718d231
 
 
 
 
96d3362
718d231
 
 
96d3362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718d231
 
 
 
 
 
 
96d3362
 
 
 
 
718d231
96d3362
 
718d231
 
 
 
 
 
96d3362
 
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d3362
718d231
589e750
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d3362
 
718d231
 
 
 
 
 
96d3362
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589e750
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589e750
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589e750
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589e750
718d231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d3362
 
 
 
 
 
718d231
 
 
 
 
 
c87ab62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import streamlit as st
from transformers import pipeline
import re
import time
import requests


HF_SPACES_API_KEY = st.secrets["HF_token"]

API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": HF_SPACES_API_KEY}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()


#-----------------------------------------------------------

API_URL_evidence ="https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": HF_SPACES_API_KEY}

def query_evidence(payload):
	response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
	return response.json()

#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ') 
st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim.')
st.caption('Then you need to input your evidence and press **:green[Submit]**.')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')

st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
#-----------------------------------------------------------------------------------------------
st.caption('**Example 1**')
st.caption(''':green[Claim:] :point_right: Amazon announced on March 16 it would hire 100,000 new warehouse and delivery workers and 
raise wages $ 2 per hour through April in response to increased demand for its services because of the coronavirus pandemic .''')

st.caption(''':green[Evidence:] :point_right: Due to the consumers increasingly relying on online retailers, 
Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 2**')
st.caption(''':green[Claim:] :point_right: In China, Buddhist monks and nuns lived together in places such as the Yunnan monastery.''')

st.caption(''':green[Evidence:] :point_right: Monastics in Japan are particularly exceptional in the Buddhist tradition because the monks and nuns can marry after receiving their higher ordination . 	''')

#-----------------------------------------------------------------------------------------------
st.caption('**Example 3**')
st.caption(''':green[Claim:] :point_right: In Batman, Penguin hydrates the henchmen with water contaminated with atomic waste.''')

st.caption(''':green[Evidence:] :point_right: And Penguin even schemes his way into the Batcave along with five dehydrated henchmen ; 
this plan fails when the henchmen are unexpectedly killed 
when he mistakenly rehydrates them with heavy water contaminated with atomic waste , 
regularly used to recharge the Batcave s atomic pile . 	''')

#-----------------------------------------------------------
def proc():
    st.write(st.session_state.text_key)

# st.text_area('enter text', on_change=proc, key='text_key')


claim_text=st.text_area("Enter your claim:", on_change=proc, key='text_key')

# form_claim = st.form(key='my_claim')
# form_claim.text_input(label='Enter your claim')
# claim_text = form_claim.form_submit_button(label='Submit')




# evidence_text=st.text_area("Enter your evidence:")

form_evidence = st.form(key='my_evidence')
form_evidence.text_input(label='Enter your evidence')
evidence_text = form_evidence.form_submit_button(label='Submit')

if evidence_text:
    st.caption(':green[Kindly hold on for a few minutes while the QA pairs are being generated]')
    st.caption(':blue[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')


import pandas as pd
from rouge_score import rouge_scorer
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")

#---------------------------------------------------------------
def claim(text):
    import re
    def remove_special_chars(text):
        # Remove special characters that are not in between numbers
        text = re.sub(r'(?<!\d)[^\w\s]+(?!\d)', '', text)

        return text

    df = pd.DataFrame({'claim' : remove_special_chars(text)},index=[0])

    def srl_allennlp(sent):
      try:
        #result = predictor.predict(sentence=sent)['verbs'][0]['description']
        #result = predictor.predict(sentence=sent)['verbs'][0]['tags']
        result = predictor.predict(sentence=sent)
        return(result)
      except IndexError: 
        pass
      #return(predictor.predict(sentence=sent))

    df['allennlp_srl'] = df['claim'].apply(lambda x: srl_allennlp(x))

    df['number_of_verbs'] = ''
    df['verbs_group'] = ''
    df['words'] = ''
    df['verbs'] = ''
    df['modified'] =''

    col1 = df['allennlp_srl']
    for i in range(len(col1)):
      num_verb = len(col1[i]['verbs'])
      df['number_of_verbs'][i] = num_verb
      df['verbs_group'][i] = col1[i]['verbs']
      df['words'][i] = col1[i]['words']

      x=[]
      for verb in range(len(col1[i]['verbs'])):
        x.append(col1[i]['verbs'][verb]['verb'])
      df['verbs'][i] = x

      verb_dict ={}
      desc = []
      for j in range(len(col1[i]['verbs'])):
        string = (col1[i]['verbs'][j]['description'])
        string = string.replace("ARG0", "who")
        string = string.replace("ARG1", "what")
        string = string.replace("ARGM-TMP", "when")
        string = string.replace("ARGM-LOC", "where")
        string = string.replace("ARGM-CAU", "why")
        desc.append(string)
        verb_dict[col1[i]['verbs'][j]['verb']]=string
      df['modified'][i] = verb_dict


    #----------FOR COLUMN "WHO"------------#
    df['who'] = ''
    for j in range(len(df['modified'])):
      val_list = []
      val_string = ''
      for k,v in df['modified'][j].items():
        # print(type(v))
        val_list.append(v)

      who = []
      for indx in range(len(val_list)):
        val_string = val_list[indx]
        pos = val_string.find("who: ")
        substr = ''

        if pos != -1:
          for i in range(pos+5, len(val_string)):
            if val_string[i] == "]":
              break
            else:
              substr = substr + val_string[i]
        else:
          pass
        if len(substr)!= 0: 
            who.append(substr)
        else:
            pass
        
 
    df['who'][j] = "<sep>".join(who)
#     else:
#         continue
    #----------FOR COLUMN "WHAT"------------#
    df['what'] = ''
    for j in range(len(df['modified'])):
      val_list = []
      val_string = ''
      for k,v in df['modified'][j].items():
        # print(type(v))
        val_list.append(v)

      what = []
      for indx in range(len(val_list)):
        val_string = val_list[indx]
        pos = val_string.find("what: ")
        substr = ''

        if pos != -1:
          for i in range(pos+6, len(val_string)):
            if val_string[i] == "]":
              break
            else:
              substr = substr + val_string[i]
        else:
          pass
        if len(substr)!= 0: 
            what.append(substr)
        else:
            pass
  
    df['what'][j] = "<sep>".join(what)
#     else:
#         continue

    #----------FOR COLUMN "WHY"------------#
    df['why'] = ''
    for j in range(len(df['modified'])):
      val_list = []
      val_string = ''
      for k,v in df['modified'][j].items():
        # print(type(v))
        val_list.append(v)

      why = []
      for indx in range(len(val_list)):
        val_string = val_list[indx]
        pos = val_string.find("why: ")
        substr = ''

        if pos != -1:
          for i in range(pos+5, len(val_string)):
            if val_string[i] == "]":
              break
            else:
              substr = substr + val_string[i]
        else:
          pass
        if len(substr)!= 0: 
            why.append(substr)
        else:
            pass

    df['why'][j] = "<sep>".join(why)
#     else:
#         continue

     #----------FOR COLUMN "WHEN"------------#
    df['when'] = ''
    for j in range(len(df['modified'])):
      val_list = []
      val_string = ''
      for k,v in df['modified'][j].items():
        # print(type(v))
        val_list.append(v)

      when = []
      for indx in range(len(val_list)):
        val_string = val_list[indx]
        pos = val_string.find("when: ")
        substr = ''

        if pos != -1:
          for i in range(pos+6, len(val_string)):
            if val_string[i] == "]":
              break
            else:
              substr = substr + val_string[i]
        else:
          pass
        if len(substr)!= 0: 
            when.append(substr)
        else:
            pass

    df['when'][j] = "<sep>".join(when)
#     else:
#         continue


    #----------FOR COLUMN "WHERE"------------#
    df['where'] = ''
    for j in range(len(df['modified'])):
      val_list = []
      val_string = ''
      for k,v in df['modified'][j].items():
        # print(type(v))
        val_list.append(v)

      where = []
      for indx in range(len(val_list)):
        val_string = val_list[indx]
        pos = val_string.find("where: ")
        substr = ''

        if pos != -1:
          for i in range(pos+7, len(val_string)):
            if val_string[i] == "]":
              break
            else:
              substr = substr + val_string[i]
        else:
          pass
        if len(substr)!= 0: 
            where.append(substr)
        else:
            pass

    df['where'][j] = "<sep>".join(where)


    data=df[["claim","who","what","why","when","where"]].copy()    
    return data
#-------------------------------------------------------------------------
def split_ws(input_list, delimiter="<sep>"):
    output_list = []
    for item in input_list:
        split_item = item.split(delimiter)
        for sub_item in split_item:
            sub_item = sub_item.strip()
            if sub_item:
                output_list.append(sub_item)
    return output_list

#--------------------------------------------------------------------------    
def calc_rouge_l_score(list_of_evidence, list_of_ans):
    scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
    scores = scorer.score(' '.join(list_of_evidence), ' '.join(list_of_ans))
    return scores['rougeL'].fmeasure
#-------------------------------------------------------------------------
    

def rephrase_question_who(question):
    if not question.lower().startswith("who"):
        words = question.split()
        words[0] = "Who"
        return " ".join(words)
    else:
        return question
#------------------------------------------------------------------------    
def gen_qa_who(df):
    list_of_ques_who=[]
    list_of_ans_who=[]
    list_of_evidence_answer_who=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["who"][i]
        claim=df['claim'][i]
        answer= split_ws(df["who"])
        evidence=df["evidence"][i]
        #time.sleep(10)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #FACT_TO_GENERATE_QUESTION_FROM = f"""generate_who_based_question_from_context_using_the_next_answer:{answer[j]} [SEP] context:{claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_who(question_ids)
                    list_of_ques_who.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_who.append(f"""Ans{j+1}:{answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    #time.sleep(10)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_who.append(f"""Evidence{j+1}:{answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_who.append(f"""No mention of 'who'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = 'Not verifiable'
                    else:
                        verification_status = 'Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_who="No claims"
            list_of_ans_who=""
            list_of_evidence_answer_who="No mention of 'who'in any related documents."
            rouge_l_scores="Not verifiable"
    return list_of_ques_who,list_of_ans_who,rouge_l_scores,list_of_evidence_answer_who
#------------------------------------------------------------    

def rephrase_question_what(question):
    if not question.lower().startswith("what"):
        words = question.split()
        words[0] = "What"
        return " ".join(words)
    else:
        return question
#----------------------------------------------------------        
def gen_qa_what(df):
    list_of_ques_what=[]
    list_of_ans_what=[]
    list_of_evidence_answer_what=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["what"][i]
        claim=df['claim'][i]
        answer= split_ws(df["what"])
        evidence=df["evidence"][i]
        #time.sleep(10)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] context:{claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_what(question_ids)
                    list_of_ques_what.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_what.append(f"""Ans{j+1}:{answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    #time.sleep(10)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_what.append(f"""Evidence{j+1}:{answer_evidence}""")
                        
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_what.append(f"""No mention of 'what'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = 'Not verifiable'
                    else:
                        verification_status = 'Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_what="No claims"
            list_of_ans_what=""
            list_of_evidence_answer_what="No mention of 'what'in any related documents."
            rouge_l_scores="Not verifiable"
    return list_of_ques_what,list_of_ans_what,rouge_l_scores,list_of_evidence_answer_what
#----------------------------------------------------------    

def rephrase_question_why(question):
    if not question.lower().startswith("why"):
        words = question.split()
        words[0] = "Why"
        return " ".join(words)
    else:
        return question

#---------------------------------------------------------        
def gen_qa_why(df):
    list_of_ques_why=[]
    list_of_ans_why=[]
    list_of_evidence_answer_why=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["why"][i]
        claim=df['claim'][i]
        answer= split_ws(df["why"])
        evidence=df["evidence"][i]
        #time.sleep(10)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_why(question_ids)
                    list_of_ques_why.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_why.append(f"""Ans{j+1}:{answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    #time.sleep(10)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_why.append(f"""Evidence{j+1}:{answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_why.append(f"""No mention of 'why'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = 'Not verifiable'
                    else:
                        verification_status = 'Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_why="No claims"
            list_of_ans_why=""
            list_of_evidence_answer_why="No mention of 'why'in any related documents."
            rouge_l_scores="Not verifiable"
    return list_of_ques_why,list_of_ans_why,rouge_l_scores,list_of_evidence_answer_why

#---------------------------------------------------------    

def rephrase_question_when(question):
    if not question.lower().startswith("when"):
        words = question.split()
        words[0] = "When"
        return " ".join(words)
    else:
        return question
#---------------------------------------------------------        
def gen_qa_when(df):
    list_of_ques_when=[]
    list_of_ans_when=[]
    list_of_evidence_answer_when=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["when"][i]
        claim=df['claim'][i]
        answer= split_ws(df["when"])
        evidence=df["evidence"][i]
        #time.sleep(10)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_when(question_ids)
                    list_of_ques_when.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_when.append(f"""Ans{j+1}:{answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    #time.sleep(10)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_when.append(f"""Evidence{j+1}:{answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_when.append(f"""No mention of 'when'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = 'Not verifiable'
                    else:
                        verification_status = 'Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_when="No claims"
            list_of_ans_when=""
            list_of_evidence_answer_when="No mention of 'when'in any related documents."
            rouge_l_scores="Not verifiable"
    return list_of_ques_when,list_of_ans_when,rouge_l_scores,list_of_evidence_answer_when

#------------------------------------------------------   

def rephrase_question_where(question):
    if not question.lower().startswith("where"):
        words = question.split()
        words[0] = "Where"
        return " ".join(words)
    else:
        return question
#------------------------------------------------------      
def gen_qa_where(df):
    list_of_ques_where=[]
    list_of_ans_where=[]
    list_of_evidence_answer_where=[]
    rouge_l_scores=[]
    for i,row in df.iterrows():
        srl=df["where"][i]
        claim=df['claim'][i]
        answer= split_ws(df["where"])
        evidence=df["evidence"][i]
        #time.sleep(10)
        if srl!="":
            try:
                for j in range(0,len(answer)):
                    FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
                    #time.sleep(10)
                    question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM, 
                              "num_beams":5, 
                              "early_stopping":True,
                                         "min_length": 100,"wait_for_model":True})[0]['generated_text'].capitalize()
                    question_ids = rephrase_question_where(question_ids)
                    list_of_ques_where.append(f"""Q{j+1}:{question_ids}""")
                    list_of_ans_where.append(f"""Ans{j+1}:{answer[j]}""")
                    input_evidence = f"answer_the_next_question_from_context: {question_ids} context: {evidence}"
                    #time.sleep(10)
                    answer_evidence = query_evidence({"inputs":input_evidence,"truncation":True,"wait_for_model":True})[0]['generated_text']
                    if answer_evidence.lower() in evidence.lower():
                        list_of_evidence_answer_where.append(f"""Evidence{j+1}:{answer_evidence}""")
                    else:
                        answer_evidence=""
                        list_of_evidence_answer_where.append(f"""No mention of 'where'in any related documents.""")
                    threshold = 0.2
                    list_of_pairs = [(answer_evidence, answer[j])]
                    rouge_l_score = calc_rouge_l_score(answer_evidence, answer[j])
                    if rouge_l_score >= threshold:
                        verification_status = 'Verified Valid'
                    elif rouge_l_score == 0:
                        verification_status = 'Not verifiable'
                    else:
                        verification_status = 'Verified False'
                    rouge_l_scores.append(verification_status)
            except:
                pass
        else:
            list_of_ques_where="No claims"
            list_of_ans_where=""
            list_of_evidence_answer_where="No mention of 'where'in any related documents."
            rouge_l_scores="Not verifiable"
    return list_of_ques_where,list_of_ans_where,rouge_l_scores,list_of_evidence_answer_where

#------------------------------------------------------    


#------------------------------------------------------------  
if claim_text:
    if evidence_text:
        df=claim(claim_text)
        df["evidence"]=evidence_text
        final_df = pd.DataFrame(columns=['Who Claims', 'What Claims', 'When Claims', 'Where Claims', 'Why Claims'])
        final_df["Who Claims"]=gen_qa_who(df)
        final_df["What Claims"]=gen_qa_what(df)
        final_df["When Claims"]=gen_qa_when(df)
        final_df["Where Claims"]=gen_qa_where(df)
        final_df["Why Claims"]=gen_qa_why(df)
        st.dataframe(final_df)