File size: 16,214 Bytes
96d3362 ba42f25 eeff5a7 bee3456 f0f4ea0 dcd3752 62e2909 f0f4ea0 8c5938d a5b1363 8c5938d ab824b1 8c5938d ab824b1 8c5938d 96d3362 eeff5a7 96d3362 eeff5a7 8c5938d 6354e98 8c5938d 96d3362 09bf063 96d3362 ef00b69 96d3362 ef00b69 96d3362 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import streamlit as st
from transformers import pipeline
import re
import requests
API_URL = "https://api-inference.huggingface.co/models/microsoft/prophetnet-large-uncased-squad-qg"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
#-----------------------------------------------------------
API_URL_evidence ="https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers_evidence = {"Authorization": "Bearer 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"}
def query_evidence(payload):
response = requests.post(API_URL_evidence, headers=headers_evidence, json=payload)
return response.json()
#-----------------------------------------------------------
st.title('Welcome to :blue[FACTIFY - 5WQA] ')
st.header('5W Aspect-based Fact Verification through Question Answering :blue[Web Demo]')
st.subheader('Here are a few steps to begin exploring and interacting with this demo.')
st.caption('First you need to input your claim and press :green[ctrl+enter].')
st.caption('Then you need to input your evidence and press :green[ctrl+enter].')
st.caption('Upon completing these two steps, kindly wait for a minute to receive the results.')
st.caption(':red[At times, you may encounter null/none outputs, which could be a result of a delay in loading the models through the API. If you experience this problem, kindly try again after a few minutes.]')
st.caption('Start by inputting the following instance of a claim and corresponding evidence into the designated text fields.')
st.caption('**:Green[Claim]** :point_down:')
st.caption('''Amazon announced on March 16 it would hire 100,000 new warehouse and delivery workers and
raise wages $ 2 per hour through April in response to increased demand for its services because of the coronavirus pandemic .''')
st.caption('**:Green[Evidence]** :point_down:')
st.caption('''Due to the consumers increasingly relying on online retailers,
Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.''')
#-----------------------------------------------------------
# claim_text=st.text_area("Enter your claim:",'''
# Due to the consumers increasingly relying on online retailers, Amazon planned to hire over 99,000 workers in the warehouse and delivery sector during the Pandemic in the USA.
# ''')
# evidence_text=st.text_area("Enter your evidence:",'''
# Amazon announced on March 16 it would hire 100,000 new warehouse and delivery workers and raise wages $ 2 per hour through April in response to increased demand for its services because of the coronavirus pandemic .
# ''')
# import streamlit as st
claim_text = st.text_input('Enter your claim:')
# st.write('The claim is', claim_text)
evidence_text = st.text_input('Enter your evidence:')
import pandas as pd
import numpy as np
from allennlp.predictors.predictor import Predictor
import allennlp_models.tagging
predictor = Predictor.from_path("structured-prediction-srl-bert.tar.gz")
#---------------------------------------------------------------
def claim(text):
import re
df = pd.DataFrame({'claim' : [text]})
pattern = r'(\d+),(\d+)'
def remove_number_commas(match):
return match.group(1) + match.group(2)
df['claim'] = df['claim'].apply(lambda x: re.sub(pattern, remove_number_commas, x))
def srl_allennlp(sent):
try:
#result = predictor.predict(sentence=sent)['verbs'][0]['description']
#result = predictor.predict(sentence=sent)['verbs'][0]['tags']
result = predictor.predict(sentence=sent)
return(result)
except IndexError:
pass
#return(predictor.predict(sentence=sent))
df['allennlp_srl'] = df['claim'].apply(lambda x: srl_allennlp(x))
df['number_of_verbs'] = ''
df['verbs_group'] = ''
df['words'] = ''
df['verbs'] = ''
df['modified'] =''
col1 = df['allennlp_srl']
for i in range(len(col1)):
num_verb = len(col1[i]['verbs'])
df['number_of_verbs'][i] = num_verb
df['verbs_group'][i] = col1[i]['verbs']
df['words'][i] = col1[i]['words']
x=[]
for verb in range(len(col1[i]['verbs'])):
x.append(col1[i]['verbs'][verb]['verb'])
df['verbs'][i] = x
verb_dict ={}
desc = []
for j in range(len(col1[i]['verbs'])):
string = (col1[i]['verbs'][j]['description'])
string = string.replace("ARG0", "who")
string = string.replace("ARG1", "what")
string = string.replace("ARGM-TMP", "when")
string = string.replace("ARGM-LOC", "where")
string = string.replace("ARGM-CAU", "why")
desc.append(string)
verb_dict[col1[i]['verbs'][j]['verb']]=string
df['modified'][i] = verb_dict
#----------FOR COLUMN "WHO"------------#
df['who'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
# print(type(v))
val_list.append(v)
who = []
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("who: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
else:
substr = None
who.append(substr)
df['who'][j] = who
#----------FOR COLUMN "WHAT"------------#
df['what'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
# print(type(v))
val_list.append(v)
what = []
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("what: ")
substr = ''
if pos != -1:
for i in range(pos+6, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
else:
substr = None
what.append(substr)
df['what'][j] = what
#----------FOR COLUMN "WHY"------------#
df['why'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
# print(type(v))
val_list.append(v)
why = []
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("why: ")
substr = ''
if pos != -1:
for i in range(pos+5, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
else:
substr = None
why.append(substr)
df['why'][j] = why
#----------FOR COLUMN "WHEN"------------#
df['when'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
# print(type(v))
val_list.append(v)
when = []
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("when: ")
substr = ''
if pos != -1:
for i in range(pos+6, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
else:
substr = None
when.append(substr)
df['when'][j] = when
#----------FOR COLUMN "WHERE"------------#
df['where'] = ''
for j in range(len(df['modified'])):
val_list = []
val_string = ''
for k,v in df['modified'][j].items():
# print(type(v))
val_list.append(v)
where = []
for indx in range(len(val_list)):
val_string = val_list[indx]
pos = val_string.find("where: ")
substr = ''
if pos != -1:
for i in range(pos+7, len(val_string)):
if val_string[i] == "]":
break
else:
substr = substr + val_string[i]
else:
substr = None
where.append(substr)
df['where'][j] = where
data=df[["claim","who","what","why","when","where"]].copy()
import re
def remove_trail_comma(text):
x = re.sub(",\s*$", "", text)
return x
data['claim']=data['claim'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
data['claim']=data['claim'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['who']=data['who'].apply(lambda x: str(x).replace(" 's","'s"))
data['who']=data['who'].apply(lambda x: str(x).replace("s β","sβ"))
data['who']=data['who'].apply(lambda x: str(x).replace(" - ","-"))
data['who']=data['who'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
# data['who']=data['who'].apply(lambda x: str(x).replace('"','').replace('"',''))
data['who']=data['who'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['who']=data['who'].apply(lambda x: str(x).rstrip(','))
data['who']=data['who'].apply(lambda x: str(x).lstrip(','))
data['who']=data['who'].apply(lambda x: str(x).replace('None,','').replace('None',''))
data['who']=data['who'].apply(remove_trail_comma)
data['what']=data['what'].apply(lambda x: str(x).replace(" 's","'s"))
data['what']=data['what'].apply(lambda x: str(x).replace("s β","sβ"))
data['what']=data['what'].apply(lambda x: str(x).replace(" - ","-"))
data['what']=data['what'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
# data['what']=data['what'].apply(lambda x: str(x).replace('"','').replace('"',''))
data['what']=data['what'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['what']=data['what'].apply(lambda x: str(x).rstrip(','))
data['what']=data['what'].apply(lambda x: str(x).lstrip(','))
data['what']=data['what'].apply(lambda x: str(x).replace('None,','').replace('None',''))
data['what']=data['what'].apply(remove_trail_comma)
data['why']=data['why'].apply(lambda x: str(x).replace(" 's","'s"))
data['why']=data['why'].apply(lambda x: str(x).replace("s β","sβ"))
data['why']=data['why'].apply(lambda x: str(x).replace(" - ","-"))
data['why']=data['why'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
# data['why']=data['why'].apply(lambda x: str(x).replace('"','').replace('"',''))
data['why']=data['why'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['why']=data['why'].apply(lambda x: str(x).rstrip(','))
data['why']=data['why'].apply(lambda x: str(x).lstrip(','))
data['why']=data['why'].apply(lambda x: str(x).replace('None,','').replace('None',''))
data['why']=data['why'].apply(remove_trail_comma)
data['when']=data['when'].apply(lambda x: str(x).replace(" 's","'s"))
data['when']=data['when'].apply(lambda x: str(x).replace("s β","sβ"))
data['when']=data['when'].apply(lambda x: str(x).replace(" - ","-"))
data['when']=data['when'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
# data['when']=data['when'].apply(lambda x: str(x).replace('"','').replace('"',''))
data['when']=data['when'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['when']=data['when'].apply(lambda x: str(x).rstrip(','))
data['when']=data['when'].apply(lambda x: str(x).lstrip(','))
data['when']=data['when'].apply(lambda x: str(x).replace('None,','').replace('None',''))
data['when']=data['when'].apply(remove_trail_comma)
data['where']=data['where'].apply(lambda x: str(x).replace(" 's","'s"))
data['where']=data['where'].apply(lambda x: str(x).replace("s β","sβ"))
data['where']=data['where'].apply(lambda x: str(x).replace(" - ","-"))
data['where']=data['where'].apply(lambda x: str(x).replace('\'','').replace('\'',''))
# data['where']=data['where'].apply(lambda x: str(x).replace('"','').replace('"',''))
data['where']=data['where'].apply(lambda x: str(x).replace('[','').replace(']',''))
data['where']=data['where'].apply(lambda x: str(x).rstrip(','))
data['where']=data['where'].apply(lambda x: str(x).lstrip(','))
data['where']=data['where'].apply(lambda x: str(x).replace('None,','').replace('None',''))
data['where']=data['where'].apply(remove_trail_comma)
return data
#-------------------------------------------------------------------------
def split_ws(input_list):
import re
output_list = []
for item in input_list:
split_item = re.findall(r'[^",]+|"[^"]*"', item)
output_list += split_item
result = [x.strip() for x in output_list]
return result
#--------------------------------------------------------------------------
def gen_qq(df):
w_list=["who","when","where","what","why"]
ans=[]
cl=[]
ind=[]
ques=[]
evid=[]
for index,value in enumerate(w_list):
for i,row in df.iterrows():
srl=df[value][i]
claim=df['claim'][i]
evidence_text=df['evidence'][i]
answer= split_ws(df[value])
try:
if len(srl.split())>0 and len(srl.split(","))>0:
for j in range(0,len(answer)):
FACT_TO_GENERATE_QUESTION_FROM = f"""{answer[j]} [SEP] {claim}"""
question_ids = query({"inputs":FACT_TO_GENERATE_QUESTION_FROM,
"num_beams":5,
"early_stopping":True})
#print("claim : {}".format(claim))
#print("answer : {}".format(answer[j]))
#print("question : {}".format(question_ids[0]['generated_text']))
ind.append(i)
cl.append(claim)
ans.append(answer[j])
ques.append(question_ids[0]['generated_text'].capitalize())
evid.append(evidence_text)
#print("-----------------------------------------")
except:
pass
return cl,ques,ans,evid
#------------------------------------------------------------
def qa_evidence(final_data):
ans=[]
cl=[]
#ind=[]
ques=[]
evi=[]
srl_ans=[]
for i,row in final_data.iterrows():
question=final_data['gen_question'][i]
evidence=final_data['evidence'][i]
claim=final_data['actual_claim'][i]
srl_answer=final_data['actual_answer'][i]
#index=df["index"][i]
input_evidence = f"question: {question} context: {evidence}"
answer = query_evidence({
"inputs":input_evidence,
"truncation":True})
#ind.append(index)
cl.append(claim)
ans.append(answer[0]["generated_text"])
ques.append(question)
evi.append(evidence)
srl_ans.append(srl_answer)
#print(f"""index: {index}""")
# print(f"""evidence: {evidence}""")
# print(f"""claim: {claim}""")
# print(f"""Question: {question}""")
# print(f"""Answer: {answer}""")
# print(f"""SRL Answer: {srl_answer}""")
# print("------------------------------------")
# return list(zip(cl,ques,srl_ans)),list(zip(evi,ques,ans))
# return cl,ques
return list(zip(ques,srl_ans)),list(zip(ques,ans))
#------------------------------------------------------------
if claim_text:
if evidence_text:
df=claim(claim_text)
df["evidence"]=evidence_text
actual_claim,gen_question,actual_answer,evidence=gen_qq(df)
final_data=pd.DataFrame([actual_claim,gen_question,actual_answer,evidence]).T
final_data.columns=["actual_claim","gen_question","actual_answer","evidence"]
a,b=qa_evidence(final_data)
# qa_evidence(final_data)
# st.json(qa_evidence(final_data))
st.json({'QA pair from claim':[{"Question": qu, "Answer": an} for qu, an in a],
'QA pair from evidence':[{"Question": qu, "Answer": an} for qu, an in b]}) |