import os import gradio as gr import requests import string import warnings import pandas as pd from huggingface_hub import login import re from groq import Groq # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") self.client = Groq(api_key=os.environ["GROQ_API_KEY"]) self.agent_prompt = ( """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.""" ) def format_final_answer(self, answer: str) -> str: cleaned = " ".join(answer.split()) return f"FINAL ANSWER: "+{cleaned} def check_commutativity(self): S = ['a', 'b', 'c', 'd', 'e'] counter_example_elements = set() index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4} self.operation_table = [ ['a', 'b', 'c', 'b', 'd'], ['b', 'c', 'a', 'e', 'c'], ['c', 'a', 'b', 'b', 'a'], ['b', 'e', 'b', 'e', 'd'], ['d', 'b', 'a', 'd', 'c'] ] for x in S: for y in S: x_idx = index[x] y_idx = index[y] if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]: counter_example_elements.add(x) counter_example_elements.add(y) return self.format_final_answer(", ".join(sorted(counter_example_elements))) def maybe_reversed(self, text: str) -> bool: words = text.split() reversed_ratio = sum( 1 for word in words if word[::-1].lower() in { "if", "you", "understand", "this", "sentence", "write", "opposite", "of", "the", "word", "left", "answer" } ) / len(words) return reversed_ratio > 0.3 def solve_riddle(self, question: str) -> str: question = question[::-1] if "opposite of the word" in question: match = re.search(r"opposite of the word ['\"](\w+)['\"]", question) if match: word = match.group(1).lower() opposites = { "left": "right", "up": "down", "hot": "cold", "true": "false", "yes": "no", "black": "white" } opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}") return self.format_final_answer(opposite) return self.format_final_answer("COULD_NOT_SOLVE") def query_groq(self, question: str) -> str: full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}" try: response = self.client.chat.completions.create( model="llama3-8b-8192", messages=[{"role": "user", "content": full_prompt}] ) answer = response.choices[0].message.content if "FINAL ANSWER:" in answer: return answer.split("FINAL ANSWER:")[-1].strip() else: return self.format_final_answer(answer) except Exception as e: print(f"[Groq ERROR]: {e}") return self.format_final_answer("GROQ_ERROR") def __call__(self, question: str) -> str: print(f"Received question: {question[:50]}...") if "commutative" in question.lower(): return self.check_commutativity() if self.maybe_reversed(question): print("Detected likely reversed riddle.") return self.solve_riddle(question) return self.query_groq(question) def question_scorer(model_answer: str, ground_truth: str) -> bool: def normalize_str(input_str, remove_punct=True) -> str: no_spaces = re.sub(r"\s", "", input_str) if remove_punct: translator = str.maketrans("", "", string.punctuation) return no_spaces.lower().translate(translator) else: return no_spaces.lower() def normalize_number_str(number_str: str) -> float | None: for char in ["$", "%", ","]: number_str = number_str.replace(char, "") try: return float(number_str) except ValueError: print(f"String '{number_str}' cannot be normalized to number.") return None def split_string(s: str, char_list: list[str] = [",", ";"]) -> list[str]: pattern = f"[{''.join(map(re.escape, char_list))}]" return [elem.strip() for elem in re.split(pattern, s)] def is_float(val) -> bool: try: float(val) return True except ValueError: return False if model_answer is None: model_answer = "None" # Case 1: Ground truth is numeric if is_float(ground_truth): print(f"Evaluating '{model_answer}' as a number.") normalized = normalize_number_str(model_answer) return normalized == float(ground_truth) if normalized is not None else False # Case 2: Ground truth is a list elif any(char in ground_truth for char in [",", ";"]): print(f"Evaluating '{model_answer}' as a comma/semicolon-separated list.") gt_elems = split_string(ground_truth) ma_elems = split_string(model_answer) if len(gt_elems) != len(ma_elems): warnings.warn("Answer lists have different lengths, returning False.", UserWarning) return False for ma_elem, gt_elem in zip(ma_elems, gt_elems): if is_float(gt_elem): normalized = normalize_number_str(ma_elem) if normalized != float(gt_elem): return False else: if normalize_str(ma_elem, remove_punct=False) != normalize_str(gt_elem, remove_punct=False): return False return True # Case 3: Ground truth is a plain string else: print(f"Evaluating '{model_answer}' as a string.") return normalize_str(model_answer) == normalize_str(ground_truth) def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print("User logged in.") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None except requests.exceptions.RequestException as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) print(submitted_answer) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() print(result_data) final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', '?')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) print(question_scorer("FINAL ANSWER: right",submitted_answer)) # --- Build Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)