Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,8 @@ import moviepy
|
|
13 |
import gradio as gr
|
14 |
import pandas as pd
|
15 |
from spacy.cli import download
|
16 |
-
|
|
|
17 |
|
18 |
class BasicAgent:
|
19 |
def __init__(self):
|
@@ -22,11 +23,15 @@ class BasicAgent:
|
|
22 |
self.spacy = spacy.load("en_core_web_sm")
|
23 |
except OSError:
|
24 |
download("en_core_web_sm")
|
25 |
-
|
|
|
26 |
self.whisper_model = whisper.load_model("base")
|
27 |
self.qa_pipeline = pipeline("question-answering", truncation=True, padding=True)
|
28 |
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
def split_text_into_chunks(self, text, max_length=512):
|
32 |
"""Split text into chunks smaller than `max_length` tokens."""
|
|
|
13 |
import gradio as gr
|
14 |
import pandas as pd
|
15 |
from spacy.cli import download
|
16 |
+
from transformers import AutoTokenizer, AutoModel
|
17 |
+
import torch
|
18 |
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
|
|
23 |
self.spacy = spacy.load("en_core_web_sm")
|
24 |
except OSError:
|
25 |
download("en_core_web_sm")
|
26 |
+
self.spacy = spacy.load("en_core_web_sm")
|
27 |
+
|
28 |
self.whisper_model = whisper.load_model("base")
|
29 |
self.qa_pipeline = pipeline("question-answering", truncation=True, padding=True)
|
30 |
self.ner_pipeline = pipeline("ner", aggregation_strategy="simple")
|
31 |
+
|
32 |
+
# ✅ FIXED: safer embedding model setup
|
33 |
+
self.embedding_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
34 |
+
self.embedding_model = AutoModel.from_pretrained("bert-base-uncased")
|
35 |
|
36 |
def split_text_into_chunks(self, text, max_length=512):
|
37 |
"""Split text into chunks smaller than `max_length` tokens."""
|