Toumaima commited on
Commit
e197f92
·
verified ·
1 Parent(s): 42893d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -98
app.py CHANGED
@@ -4,9 +4,8 @@ import requests
4
  import string
5
  import warnings
6
  import pandas as pd
7
- from huggingface_hub import login
8
  import re
9
- import json
10
  from groq import Groq
11
 
12
  # --- Constants ---
@@ -16,7 +15,7 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
16
  class BasicAgent:
17
  def __init__(self):
18
  print("BasicAgent initialized.")
19
- self.client = Groq(api_key=os.environ["GROQ_API_KEY"])
20
  self.agent_prompt = (
21
  """You are a general AI assistant. I will ask you a question. Report your thoughts, and
22
  finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
@@ -75,7 +74,7 @@ class BasicAgent:
75
  "true": "false", "yes": "no", "black": "white"
76
  }
77
  opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
78
- return "FINAL ANSWER: RIGHT"
79
  return self.format_final_answer("COULD_NOT_SOLVE")
80
 
81
  def query_groq(self, question: str) -> str:
@@ -86,6 +85,7 @@ class BasicAgent:
86
  messages=[{"role": "user", "content": full_prompt}]
87
  )
88
  answer = response.choices[0].message.content
 
89
  if "FINAL ANSWER: " in answer:
90
  return answer.split("FINAL ANSWER: ")[-1].strip().upper()
91
  else:
@@ -103,68 +103,6 @@ class BasicAgent:
103
  return self.solve_riddle(question)
104
  return self.query_groq(question)
105
 
106
- # --- Answer Scoring ---
107
- def question_scorer(model_answer: str, ground_truth: str) -> bool:
108
- def normalize_str(input_str, remove_punct=True) -> str:
109
- no_spaces = re.sub(r"\s", "", input_str)
110
- if remove_punct:
111
- translator = str.maketrans("", "", string.punctuation)
112
- return no_spaces.lower().translate(translator)
113
- else:
114
- return no_spaces.lower()
115
-
116
- def normalize_number_str(number_str: str) -> float | None:
117
- for char in ["$", "%", ","]:
118
- number_str = number_str.replace(char, "")
119
- try:
120
- return float(number_str)
121
- except ValueError:
122
- print(f"String '{number_str}' cannot be normalized to number.")
123
- return None
124
-
125
- def split_string(s: str, char_list: list[str] = [",", ";"]) -> list[str]:
126
- pattern = f"[{''.join(map(re.escape, char_list))}]"
127
- return [elem.strip() for elem in re.split(pattern, s)]
128
-
129
- def is_float(val) -> bool:
130
- try:
131
- float(val)
132
- return True
133
- except ValueError:
134
- return False
135
-
136
- if model_answer is None:
137
- model_answer = "None"
138
-
139
- if is_float(ground_truth):
140
- print(f"Evaluating '{model_answer}' as a number.")
141
- normalized = normalize_number_str(model_answer)
142
- return normalized == float(ground_truth) if normalized is not None else False
143
-
144
- elif any(char in ground_truth for char in [",", ";"]):
145
- print(f"Evaluating '{model_answer}' as a comma/semicolon-separated list.")
146
- gt_elems = split_string(ground_truth)
147
- ma_elems = split_string(model_answer)
148
-
149
- if len(gt_elems) != len(ma_elems):
150
- warnings.warn("Answer lists have different lengths, returning False.", UserWarning)
151
- return False
152
-
153
- for ma_elem, gt_elem in zip(ma_elems, gt_elems):
154
- if is_float(gt_elem):
155
- normalized = normalize_number_str(ma_elem)
156
- if normalized != float(gt_elem):
157
- return False
158
- else:
159
- if normalize_str(ma_elem, remove_punct=False) != normalize_str(gt_elem, remove_punct=False):
160
- return False
161
- return True
162
-
163
- else:
164
- print(f"Evaluating '{model_answer}' as a string.")
165
- return normalize_str(model_answer) == normalize_str(ground_truth)
166
-
167
- # --- Run and Submit All ---
168
  def run_and_submit_all(profile: gr.OAuthProfile | None):
169
  space_id = os.getenv("SPACE_ID")
170
  if profile:
@@ -184,7 +122,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
184
  return f"Error initializing agent: {e}", None
185
 
186
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
187
-
188
  try:
189
  response = requests.get(questions_url, timeout=15)
190
  response.raise_for_status()
@@ -196,45 +133,31 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
196
 
197
  results_log = []
198
  answers_payload = []
199
- correct_count = 0
200
- total_with_gold = 0
201
-
202
  for item in questions_data:
203
  task_id = item.get("task_id")
204
  question_text = item.get("question")
205
- gold_answer = item.get("gold_answer")
206
- print (gold_answer)
207
  if not task_id or question_text is None:
208
  continue
209
-
210
  try:
211
  submitted_answer = agent(question_text)
212
- is_correct = question_scorer(submitted_answer, gold_answer) if gold_answer else None
213
-
214
- if is_correct is not None:
215
- total_with_gold += 1
216
- if is_correct:
217
- correct_count += 1
218
-
219
- answers_payload.append({
220
- "task_id": task_id,
221
- "submitted_answer": submitted_answer
222
- })
223
 
 
224
  results_log.append({
225
  "Task ID": task_id,
226
  "Question": question_text,
227
- "Submitted Answer": submitted_answer,
228
  "Gold Answer": gold_answer,
229
- "Correct?": "✅" if is_correct else "❌" if is_correct is not None else "N/A"
230
  })
231
  except Exception as e:
232
  results_log.append({
233
  "Task ID": task_id,
234
  "Question": question_text,
235
- "Submitted Answer": f"AGENT ERROR: {e}",
236
  "Gold Answer": gold_answer,
237
- "Correct?": ""
238
  })
239
 
240
  if not answers_payload:
@@ -251,22 +174,14 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
251
  response.raise_for_status()
252
  result_data = response.json()
253
  print(result_data)
254
-
255
- accuracy_text = ""
256
- if total_with_gold > 0:
257
- accuracy = (correct_count / total_with_gold) * 100
258
- accuracy_text = f"\nLocal Accuracy: {accuracy:.2f}% ({correct_count}/{total_with_gold} correct)"
259
-
260
  final_status = (
261
  f"Submission Successful!\n"
262
  f"User: {result_data.get('username')}\n"
263
- f"Overall Score (from server): {result_data.get('score', '?')}% "
264
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
265
  f"Message: {result_data.get('message', 'No message received.')}"
266
- f"{accuracy_text}"
267
  )
268
  return final_status, pd.DataFrame(results_log)
269
-
270
  except Exception as e:
271
  return f"Submission Failed: {e}", pd.DataFrame(results_log)
272
 
@@ -285,4 +200,4 @@ with gr.Blocks() as demo:
285
 
286
  if __name__ == "__main__":
287
  print("Launching Gradio Interface for Basic Agent Evaluation...")
288
- demo.launch(debug=True, share=False)
 
4
  import string
5
  import warnings
6
  import pandas as pd
 
7
  import re
8
+ from huggingface_hub import login
9
  from groq import Groq
10
 
11
  # --- Constants ---
 
15
  class BasicAgent:
16
  def __init__(self):
17
  print("BasicAgent initialized.")
18
+ self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
19
  self.agent_prompt = (
20
  """You are a general AI assistant. I will ask you a question. Report your thoughts, and
21
  finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
 
74
  "true": "false", "yes": "no", "black": "white"
75
  }
76
  opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
77
+ return f"FINAL ANSWER: {opposite.upper()}"
78
  return self.format_final_answer("COULD_NOT_SOLVE")
79
 
80
  def query_groq(self, question: str) -> str:
 
85
  messages=[{"role": "user", "content": full_prompt}]
86
  )
87
  answer = response.choices[0].message.content
88
+ print(f"[Groq Raw Response]: {answer}")
89
  if "FINAL ANSWER: " in answer:
90
  return answer.split("FINAL ANSWER: ")[-1].strip().upper()
91
  else:
 
103
  return self.solve_riddle(question)
104
  return self.query_groq(question)
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  def run_and_submit_all(profile: gr.OAuthProfile | None):
107
  space_id = os.getenv("SPACE_ID")
108
  if profile:
 
122
  return f"Error initializing agent: {e}", None
123
 
124
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
125
  try:
126
  response = requests.get(questions_url, timeout=15)
127
  response.raise_for_status()
 
133
 
134
  results_log = []
135
  answers_payload = []
 
 
 
136
  for item in questions_data:
137
  task_id = item.get("task_id")
138
  question_text = item.get("question")
139
+ gold_answer = item.get("answer") or item.get("ground_truth")
140
+
141
  if not task_id or question_text is None:
142
  continue
 
143
  try:
144
  submitted_answer = agent(question_text)
145
+ print(f"Q: {question_text}")
146
+ print(f"Predicted: {submitted_answer} | Gold: {gold_answer}")
 
 
 
 
 
 
 
 
 
147
 
148
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
149
  results_log.append({
150
  "Task ID": task_id,
151
  "Question": question_text,
 
152
  "Gold Answer": gold_answer,
153
+ "Submitted Answer": submitted_answer
154
  })
155
  except Exception as e:
156
  results_log.append({
157
  "Task ID": task_id,
158
  "Question": question_text,
 
159
  "Gold Answer": gold_answer,
160
+ "Submitted Answer": f"AGENT ERROR: {e}"
161
  })
162
 
163
  if not answers_payload:
 
174
  response.raise_for_status()
175
  result_data = response.json()
176
  print(result_data)
 
 
 
 
 
 
177
  final_status = (
178
  f"Submission Successful!\n"
179
  f"User: {result_data.get('username')}\n"
180
+ f"Overall Score: {result_data.get('score', '?')}% "
181
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
182
  f"Message: {result_data.get('message', 'No message received.')}"
 
183
  )
184
  return final_status, pd.DataFrame(results_log)
 
185
  except Exception as e:
186
  return f"Submission Failed: {e}", pd.DataFrame(results_log)
187
 
 
200
 
201
  if __name__ == "__main__":
202
  print("Launching Gradio Interface for Basic Agent Evaluation...")
203
+ demo.launch(debug=True, share=False)