Toumaima commited on
Commit
c38db28
·
verified ·
1 Parent(s): ad7cb9f

Updated py file

Browse files
Files changed (1) hide show
  1. app.py +59 -31
app.py CHANGED
@@ -1,34 +1,63 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,13 +67,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
@@ -55,37 +84,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
 
79
  if not task_id or question_text is None:
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
82
  try:
83
- submitted_answer = agent(question_text)
 
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
@@ -146,15 +178,14 @@ with gr.Blocks() as demo:
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
 
154
  ---
155
  **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
@@ -163,7 +194,6 @@ with gr.Blocks() as demo:
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -173,16 +203,14 @@ with gr.Blocks() as demo:
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
182
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
  if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ import moviepy.editor as mp
6
+ from duckduckgo_search import ddg
7
+ import whisper
8
+ from transformers import pipeline
9
 
 
10
  # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
  # --- Basic Agent Definition ---
 
14
  class BasicAgent:
15
  def __init__(self):
16
  print("BasicAgent initialized.")
17
+ # Initialize the Whisper model for video transcription
18
+ self.whisper_model = whisper.load_model("base") # You can change the model to `large`, `medium`, etc.
19
+ self.search_pipeline = pipeline("question-answering")
20
+
21
+ def call_whisper(self, video_path: str) -> str:
22
+ # Transcribe the video to text using Whisper model
23
+ video = mp.VideoFileClip(video_path)
24
+ audio_path = "temp_audio.wav"
25
+ video.audio.write_audiofile(audio_path)
26
+
27
+ # Transcribe audio to text
28
+ result = self.whisper_model.transcribe(audio_path)
29
+ return result["text"]
30
+
31
+ def search(self, question: str) -> str:
32
+ # Perform a DuckDuckGo search for an answer to the question
33
+ search_results = ddg(question)
34
+ return search_results[0]["body"] if search_results else "No relevant search results found."
35
+
36
+ def __call__(self, question: str, video_path: str = None) -> str:
37
  print(f"Agent received question (first 50 chars): {question[:50]}...")
 
 
 
38
 
39
+ # If a video path is provided, use Whisper to transcribe the video
40
+ if video_path:
41
+ transcription = self.call_whisper(video_path)
42
+ print(f"Transcribed video text: {transcription[:100]}...") # Print first 100 characters
43
+ return transcription
44
+
45
+ # If no video is provided, search the web for an answer
46
+ search_answer = self.search(question)
47
+ print(f"Agent returning search result: {search_answer[:100]}...")
48
+ return search_answer
49
+
50
+
51
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
52
  """
53
  Fetches all questions, runs the BasicAgent on them, submits all answers,
54
  and displays the results.
55
  """
56
  # --- Determine HF Space Runtime URL and Repo URL ---
57
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
58
 
59
  if profile:
60
+ username = f"{profile.username}"
61
  print(f"User logged in: {username}")
62
  else:
63
  print("User not logged in.")
 
67
  questions_url = f"{api_url}/questions"
68
  submit_url = f"{api_url}/submit"
69
 
70
+ # 1. Instantiate Agent
71
  try:
72
  agent = BasicAgent()
73
  except Exception as e:
74
  print(f"Error instantiating agent: {e}")
75
  return f"Error initializing agent: {e}", None
76
+
77
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
78
  print(agent_code)
79
 
 
84
  response.raise_for_status()
85
  questions_data = response.json()
86
  if not questions_data:
87
+ print("Fetched questions list is empty.")
88
+ return "Fetched questions list is empty or invalid format.", None
89
  print(f"Fetched {len(questions_data)} questions.")
90
  except requests.exceptions.RequestException as e:
91
  print(f"Error fetching questions: {e}")
92
  return f"Error fetching questions: {e}", None
93
  except requests.exceptions.JSONDecodeError as e:
94
+ print(f"Error decoding JSON response from questions endpoint: {e}")
95
+ return f"Error decoding server response for questions: {e}", None
 
96
  except Exception as e:
97
  print(f"An unexpected error occurred fetching questions: {e}")
98
  return f"An unexpected error occurred fetching questions: {e}", None
99
 
100
+ # 3. Run Agent
101
  results_log = []
102
  answers_payload = []
103
  print(f"Running agent on {len(questions_data)} questions...")
104
  for item in questions_data:
105
  task_id = item.get("task_id")
106
  question_text = item.get("question")
107
+ video_link = item.get("video_link") # Assuming the question contains an optional video link
108
+
109
  if not task_id or question_text is None:
110
  print(f"Skipping item with missing task_id or question: {item}")
111
  continue
112
+
113
  try:
114
+ # Pass video_link if available, else just the question text
115
+ submitted_answer = agent(question_text, video_path=video_link)
116
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
117
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
118
  except Exception as e:
119
+ print(f"Error running agent on task {task_id}: {e}")
120
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
121
 
122
  if not answers_payload:
123
  print("Agent did not produce any answers to submit.")
 
178
  gr.Markdown(
179
  """
180
  **Instructions:**
181
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
182
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
183
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
184
 
185
  ---
186
  **Disclaimers:**
187
+ Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
188
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
189
  """
190
  )
191
 
 
194
  run_button = gr.Button("Run Evaluation & Submit All Answers")
195
 
196
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
197
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
198
 
199
  run_button.click(
 
203
 
204
  if __name__ == "__main__":
205
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
206
  space_host_startup = os.getenv("SPACE_HOST")
207
+ space_id_startup = os.getenv("SPACE_ID")
208
 
209
  if space_host_startup:
210
  print(f"✅ SPACE_HOST found: {space_host_startup}")
211
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
212
  else:
213
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
 
214
  if space_id_startup: # Print repo URLs if SPACE_ID is found
215
  print(f"✅ SPACE_ID found: {space_id_startup}")
216
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")