Spaces:
Runtime error
Runtime error
Updated py file
Browse files
app.py
CHANGED
@@ -1,34 +1,63 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,13 +67,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent
|
42 |
try:
|
43 |
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
@@ -55,37 +84,40 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3. Run
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
|
|
82 |
try:
|
83 |
-
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
@@ -146,15 +178,14 @@ with gr.Blocks() as demo:
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
|
154 |
---
|
155 |
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time (
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
158 |
"""
|
159 |
)
|
160 |
|
@@ -163,7 +194,6 @@ with gr.Blocks() as demo:
|
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -173,16 +203,14 @@ with gr.Blocks() as demo:
|
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
import moviepy.editor as mp
|
6 |
+
from duckduckgo_search import ddg
|
7 |
+
import whisper
|
8 |
+
from transformers import pipeline
|
9 |
|
|
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
# --- Basic Agent Definition ---
|
|
|
14 |
class BasicAgent:
|
15 |
def __init__(self):
|
16 |
print("BasicAgent initialized.")
|
17 |
+
# Initialize the Whisper model for video transcription
|
18 |
+
self.whisper_model = whisper.load_model("base") # You can change the model to `large`, `medium`, etc.
|
19 |
+
self.search_pipeline = pipeline("question-answering")
|
20 |
+
|
21 |
+
def call_whisper(self, video_path: str) -> str:
|
22 |
+
# Transcribe the video to text using Whisper model
|
23 |
+
video = mp.VideoFileClip(video_path)
|
24 |
+
audio_path = "temp_audio.wav"
|
25 |
+
video.audio.write_audiofile(audio_path)
|
26 |
+
|
27 |
+
# Transcribe audio to text
|
28 |
+
result = self.whisper_model.transcribe(audio_path)
|
29 |
+
return result["text"]
|
30 |
+
|
31 |
+
def search(self, question: str) -> str:
|
32 |
+
# Perform a DuckDuckGo search for an answer to the question
|
33 |
+
search_results = ddg(question)
|
34 |
+
return search_results[0]["body"] if search_results else "No relevant search results found."
|
35 |
+
|
36 |
+
def __call__(self, question: str, video_path: str = None) -> str:
|
37 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
|
|
38 |
|
39 |
+
# If a video path is provided, use Whisper to transcribe the video
|
40 |
+
if video_path:
|
41 |
+
transcription = self.call_whisper(video_path)
|
42 |
+
print(f"Transcribed video text: {transcription[:100]}...") # Print first 100 characters
|
43 |
+
return transcription
|
44 |
+
|
45 |
+
# If no video is provided, search the web for an answer
|
46 |
+
search_answer = self.search(question)
|
47 |
+
print(f"Agent returning search result: {search_answer[:100]}...")
|
48 |
+
return search_answer
|
49 |
+
|
50 |
+
|
51 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
52 |
"""
|
53 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
54 |
and displays the results.
|
55 |
"""
|
56 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
57 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
58 |
|
59 |
if profile:
|
60 |
+
username = f"{profile.username}"
|
61 |
print(f"User logged in: {username}")
|
62 |
else:
|
63 |
print("User not logged in.")
|
|
|
67 |
questions_url = f"{api_url}/questions"
|
68 |
submit_url = f"{api_url}/submit"
|
69 |
|
70 |
+
# 1. Instantiate Agent
|
71 |
try:
|
72 |
agent = BasicAgent()
|
73 |
except Exception as e:
|
74 |
print(f"Error instantiating agent: {e}")
|
75 |
return f"Error initializing agent: {e}", None
|
76 |
+
|
77 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
78 |
print(agent_code)
|
79 |
|
|
|
84 |
response.raise_for_status()
|
85 |
questions_data = response.json()
|
86 |
if not questions_data:
|
87 |
+
print("Fetched questions list is empty.")
|
88 |
+
return "Fetched questions list is empty or invalid format.", None
|
89 |
print(f"Fetched {len(questions_data)} questions.")
|
90 |
except requests.exceptions.RequestException as e:
|
91 |
print(f"Error fetching questions: {e}")
|
92 |
return f"Error fetching questions: {e}", None
|
93 |
except requests.exceptions.JSONDecodeError as e:
|
94 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
95 |
+
return f"Error decoding server response for questions: {e}", None
|
|
|
96 |
except Exception as e:
|
97 |
print(f"An unexpected error occurred fetching questions: {e}")
|
98 |
return f"An unexpected error occurred fetching questions: {e}", None
|
99 |
|
100 |
+
# 3. Run Agent
|
101 |
results_log = []
|
102 |
answers_payload = []
|
103 |
print(f"Running agent on {len(questions_data)} questions...")
|
104 |
for item in questions_data:
|
105 |
task_id = item.get("task_id")
|
106 |
question_text = item.get("question")
|
107 |
+
video_link = item.get("video_link") # Assuming the question contains an optional video link
|
108 |
+
|
109 |
if not task_id or question_text is None:
|
110 |
print(f"Skipping item with missing task_id or question: {item}")
|
111 |
continue
|
112 |
+
|
113 |
try:
|
114 |
+
# Pass video_link if available, else just the question text
|
115 |
+
submitted_answer = agent(question_text, video_path=video_link)
|
116 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
117 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
118 |
except Exception as e:
|
119 |
+
print(f"Error running agent on task {task_id}: {e}")
|
120 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
121 |
|
122 |
if not answers_payload:
|
123 |
print("Agent did not produce any answers to submit.")
|
|
|
178 |
gr.Markdown(
|
179 |
"""
|
180 |
**Instructions:**
|
181 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
182 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
183 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
184 |
|
185 |
---
|
186 |
**Disclaimers:**
|
187 |
+
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
188 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
189 |
"""
|
190 |
)
|
191 |
|
|
|
194 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
195 |
|
196 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
197 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
198 |
|
199 |
run_button.click(
|
|
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
206 |
space_host_startup = os.getenv("SPACE_HOST")
|
207 |
+
space_id_startup = os.getenv("SPACE_ID")
|
208 |
|
209 |
if space_host_startup:
|
210 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
211 |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
212 |
else:
|
213 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
|
|
214 |
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
215 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
216 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|