Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,12 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langgraph.prebuilt import tools_condition, ToolNode
|
3 |
from langchain_core.messages import SystemMessage, HumanMessage
|
4 |
from langchain_core.tools import tool
|
@@ -6,35 +14,32 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
6 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
from groq import Groq
|
9 |
-
import os
|
10 |
-
import re
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
13 |
@tool
|
14 |
def wiki_search(query: str) -> str:
|
15 |
-
"""Search Wikipedia for a query and return up to 2 results."""
|
16 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
17 |
return "\n\n".join([doc.page_content for doc in docs])
|
18 |
|
19 |
@tool
|
20 |
def web_search(query: str) -> str:
|
21 |
-
"""Search the web using Tavily."""
|
22 |
docs = TavilySearchResults(max_results=3).invoke(query)
|
23 |
return "\n\n".join([doc.page_content for doc in docs])
|
24 |
|
25 |
@tool
|
26 |
def arvix_search(query: str) -> str:
|
27 |
-
"""Search Arxiv and return up to 3 results."""
|
28 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
29 |
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
30 |
|
31 |
-
# Tool-based LangGraph builder
|
32 |
def build_tool_graph(system_prompt):
|
33 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
34 |
llm_with_tools = llm.bind_tools([wiki_search, web_search, arvix_search])
|
35 |
|
36 |
def assistant(state: MessagesState):
|
37 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])
|
38 |
|
39 |
builder = StateGraph(MessagesState)
|
40 |
builder.add_node("assistant", assistant)
|
@@ -45,6 +50,7 @@ def build_tool_graph(system_prompt):
|
|
45 |
builder.add_edge("tools", "assistant")
|
46 |
return builder.compile()
|
47 |
|
|
|
48 |
class BasicAgent:
|
49 |
def __init__(self):
|
50 |
print("BasicAgent initialized.")
|
@@ -65,7 +71,8 @@ class BasicAgent:
|
|
65 |
|
66 |
def format_final_answer(self, answer: str) -> str:
|
67 |
cleaned = " ".join(answer.split())
|
68 |
-
|
|
|
69 |
|
70 |
def query_groq(self, question: str) -> str:
|
71 |
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
|
@@ -150,4 +157,92 @@ class BasicAgent:
|
|
150 |
}
|
151 |
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
|
152 |
return f"FINAL ANSWER: {opposite.upper()}"
|
153 |
-
return self.format_final_answer("COULD_NOT_SOLVE")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
|
7 |
+
# ---------- Imports for Advanced Agent ----------
|
8 |
+
import re
|
9 |
+
from langgraph.graph import StateGraph, MessagesState
|
10 |
from langgraph.prebuilt import tools_condition, ToolNode
|
11 |
from langchain_core.messages import SystemMessage, HumanMessage
|
12 |
from langchain_core.tools import tool
|
|
|
14 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
15 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
16 |
from groq import Groq
|
|
|
|
|
17 |
|
18 |
+
# --- Constants ---
|
19 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
20 |
+
|
21 |
+
# ---------- Tools ----------
|
22 |
@tool
|
23 |
def wiki_search(query: str) -> str:
|
|
|
24 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
25 |
return "\n\n".join([doc.page_content for doc in docs])
|
26 |
|
27 |
@tool
|
28 |
def web_search(query: str) -> str:
|
|
|
29 |
docs = TavilySearchResults(max_results=3).invoke(query)
|
30 |
return "\n\n".join([doc.page_content for doc in docs])
|
31 |
|
32 |
@tool
|
33 |
def arvix_search(query: str) -> str:
|
|
|
34 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
35 |
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
36 |
|
|
|
37 |
def build_tool_graph(system_prompt):
|
38 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
39 |
llm_with_tools = llm.bind_tools([wiki_search, web_search, arvix_search])
|
40 |
|
41 |
def assistant(state: MessagesState):
|
42 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
43 |
|
44 |
builder = StateGraph(MessagesState)
|
45 |
builder.add_node("assistant", assistant)
|
|
|
50 |
builder.add_edge("tools", "assistant")
|
51 |
return builder.compile()
|
52 |
|
53 |
+
# --- Advanced BasicAgent Class ---
|
54 |
class BasicAgent:
|
55 |
def __init__(self):
|
56 |
print("BasicAgent initialized.")
|
|
|
71 |
|
72 |
def format_final_answer(self, answer: str) -> str:
|
73 |
cleaned = " ".join(answer.split())
|
74 |
+
match = re.search(r"FINAL ANSWER:\s*(.*)", cleaned, re.IGNORECASE)
|
75 |
+
return f"FINAL ANSWER: {match.group(1).strip()}" if match else f"FINAL ANSWER: {cleaned}"
|
76 |
|
77 |
def query_groq(self, question: str) -> str:
|
78 |
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
|
|
|
157 |
}
|
158 |
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
|
159 |
return f"FINAL ANSWER: {opposite.upper()}"
|
160 |
+
return self.format_final_answer("COULD_NOT_SOLVE")
|
161 |
+
|
162 |
+
# --- Evaluation Logic ---
|
163 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
164 |
+
space_id = os.getenv("SPACE_ID")
|
165 |
+
if profile:
|
166 |
+
username = profile.username
|
167 |
+
print(f"User logged in: {username}")
|
168 |
+
else:
|
169 |
+
return "Please Login to Hugging Face with the button.", None
|
170 |
+
|
171 |
+
api_url = DEFAULT_API_URL
|
172 |
+
questions_url = f"{api_url}/questions"
|
173 |
+
submit_url = f"{api_url}/submit"
|
174 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
175 |
+
|
176 |
+
try:
|
177 |
+
agent = BasicAgent()
|
178 |
+
except Exception as e:
|
179 |
+
return f"Error initializing agent: {e}", None
|
180 |
+
|
181 |
+
try:
|
182 |
+
response = requests.get(questions_url, timeout=15)
|
183 |
+
response.raise_for_status()
|
184 |
+
questions_data = response.json()
|
185 |
+
if not questions_data:
|
186 |
+
return "Fetched questions list is empty or invalid format.", None
|
187 |
+
except Exception as e:
|
188 |
+
return f"Error fetching questions: {e}", None
|
189 |
+
|
190 |
+
results_log = []
|
191 |
+
answers_payload = []
|
192 |
+
|
193 |
+
for item in questions_data:
|
194 |
+
task_id = item.get("task_id")
|
195 |
+
question_text = item.get("question")
|
196 |
+
if not task_id or question_text is None:
|
197 |
+
continue
|
198 |
+
try:
|
199 |
+
submitted_answer = agent(question_text)
|
200 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
201 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
202 |
+
except Exception as e:
|
203 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
204 |
+
|
205 |
+
if not answers_payload:
|
206 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
207 |
+
|
208 |
+
submission_data = {
|
209 |
+
"username": username.strip(),
|
210 |
+
"agent_code": agent_code,
|
211 |
+
"answers": answers_payload
|
212 |
+
}
|
213 |
+
|
214 |
+
try:
|
215 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
216 |
+
response.raise_for_status()
|
217 |
+
result_data = response.json()
|
218 |
+
final_status = (
|
219 |
+
f"Submission Successful!\n"
|
220 |
+
f"User: {result_data.get('username')}\n"
|
221 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
222 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
223 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
224 |
+
)
|
225 |
+
return final_status, pd.DataFrame(results_log)
|
226 |
+
except Exception as e:
|
227 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
228 |
+
|
229 |
+
# --- Gradio UI ---
|
230 |
+
with gr.Blocks() as demo:
|
231 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
232 |
+
gr.Markdown(
|
233 |
+
"""
|
234 |
+
**Instructions:**
|
235 |
+
1. Clone and customize your agent logic.
|
236 |
+
2. Log in with Hugging Face.
|
237 |
+
3. Click the button to run evaluation and submit your answers.
|
238 |
+
"""
|
239 |
+
)
|
240 |
+
gr.LoginButton()
|
241 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
242 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
243 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
244 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
print("Launching Gradio Interface...")
|
248 |
+
demo.launch(debug=True, share=False)
|