Toumaima commited on
Commit
8b6eba4
·
verified ·
1 Parent(s): 9bbb7c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +170 -170
app.py CHANGED
@@ -66,177 +66,177 @@ class BasicAgent:
66
  return self.solve_riddle(question)
67
  return "FINAL ANSWER: NOT_A_RIDDLE"
68
 
69
- def run_and_submit_all( profile: gr.OAuthProfile | None):
70
- """
71
- Fetches all questions, runs the BasicAgent on them, submits all answers,
72
- and displays the results.
73
- """
74
- # --- Determine HF Space Runtime URL and Repo URL ---
75
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
76
- if profile:
77
- username= f"{profile.username}"
78
- print(f"User logged in: {username}")
79
- else:
80
- print("User not logged in.")
81
- return "Please Login to Hugging Face with the button.", None
82
-
83
- api_url = DEFAULT_API_URL
84
- questions_url = f"{api_url}/questions"
85
- submit_url = f"{api_url}/submit"
86
-
87
- # 1. Instantiate Agent ( modify this part to create your agent)
88
- try:
89
- agent = BasicAgent()
90
- except Exception as e:
91
- print(f"Error instantiating agent: {e}")
92
- return f"Error initializing agent: {e}", None
93
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
94
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
95
- print(agent_code)
96
-
97
- # 2. Fetch Questions
98
- print(f"Fetching questions from: {questions_url}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  try:
100
- response = requests.get(questions_url, timeout=15)
101
- response.raise_for_status()
102
- questions_data = response.json()
103
- if not questions_data:
104
- print("Fetched questions list is empty.")
105
- return "Fetched questions list is empty or invalid format.", None
106
- print(f"Fetched {len(questions_data)} questions.")
107
- except requests.exceptions.RequestException as e:
108
- print(f"Error fetching questions: {e}")
109
- return f"Error fetching questions: {e}", None
110
- except requests.exceptions.JSONDecodeError as e:
111
- print(f"Error decoding JSON response from questions endpoint: {e}")
112
- print(f"Response text: {response.text[:500]}")
113
- return f"Error decoding server response for questions: {e}", None
114
  except Exception as e:
115
- print(f"An unexpected error occurred fetching questions: {e}")
116
- return f"An unexpected error occurred fetching questions: {e}", None
117
-
118
- # 3. Run your Agent
119
- results_log = []
120
- answers_payload = []
121
- print(f"Running agent on {len(questions_data)} questions...")
122
- for item in questions_data:
123
- task_id = item.get("task_id")
124
- question_text = item.get("question")
125
- if not task_id or question_text is None:
126
- print(f"Skipping item with missing task_id or question: {item}")
127
- continue
128
- try:
129
- submitted_answer = agent(question_text)
130
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
131
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
132
- except Exception as e:
133
- print(f"Error running agent on task {task_id}: {e}")
134
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
135
-
136
- if not answers_payload:
137
- print("Agent did not produce any answers to submit.")
138
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
139
-
140
- # 4. Prepare Submission
141
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
142
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
143
- print(status_update)
144
-
145
- # 5. Submit
146
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
147
  try:
148
- response = requests.post(submit_url, json=submission_data, timeout=60)
149
- response.raise_for_status()
150
- result_data = response.json()
151
- final_status = (
152
- f"Submission Successful!\n"
153
- f"User: {result_data.get('username')}\n"
154
- f"Overall Score: {result_data.get('score', 'N/A')}% "
155
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
156
- f"Message: {result_data.get('message', 'No message received.')}"
157
- )
158
- print("Submission successful.")
159
- results_df = pd.DataFrame(results_log)
160
- return final_status, results_df
161
- except requests.exceptions.HTTPError as e:
162
- error_detail = f"Server responded with status {e.response.status_code}."
163
- try:
164
- error_json = e.response.json()
165
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
166
- except requests.exceptions.JSONDecodeError:
167
- error_detail += f" Response: {e.response.text[:500]}"
168
- status_message = f"Submission Failed: {error_detail}"
169
- print(status_message)
170
- results_df = pd.DataFrame(results_log)
171
- return status_message, results_df
172
- except requests.exceptions.Timeout:
173
- status_message = "Submission Failed: The request timed out."
174
- print(status_message)
175
- results_df = pd.DataFrame(results_log)
176
- return status_message, results_df
177
- except requests.exceptions.RequestException as e:
178
- status_message = f"Submission Failed: Network error - {e}"
179
- print(status_message)
180
- results_df = pd.DataFrame(results_log)
181
- return status_message, results_df
182
- except Exception as e:
183
- status_message = f"An unexpected error occurred during submission: {e}"
184
- print(status_message)
185
- results_df = pd.DataFrame(results_log)
186
- return status_message, results_df
187
-
188
-
189
- # --- Build Gradio Interface using Blocks ---
190
- with gr.Blocks() as demo:
191
- gr.Markdown("# Basic Agent Evaluation Runner")
192
- gr.Markdown(
193
- """
194
- **Instructions:**
195
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
196
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
197
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
198
- ---
199
- **Disclaimers:**
200
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
201
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
202
- """
203
- )
204
-
205
- gr.LoginButton()
206
-
207
- run_button = gr.Button("Run Evaluation & Submit All Answers")
208
-
209
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
210
- # Removed max_rows=10 from DataFrame constructor
211
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
212
-
213
- run_button.click(
214
- fn=run_and_submit_all,
215
- outputs=[status_output, results_table]
216
- )
217
-
218
- if __name__ == "__main__":
219
- print("\n" + "-"*30 + " App Starting " + "-"*30)
220
- # Check for SPACE_HOST and SPACE_ID at startup for information
221
- space_host_startup = os.getenv("SPACE_HOST")
222
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
223
-
224
- if space_host_startup:
225
- print(f"✅ SPACE_HOST found: {space_host_startup}")
226
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
227
- else:
228
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
229
-
230
- if space_id_startup: # Print repo URLs if SPACE_ID is found
231
- print(f"✅ SPACE_ID found: {space_id_startup}")
232
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
233
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
234
- else:
235
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
236
-
237
- print("-"*(60 + len(" App Starting ")) + "\n")
238
-
239
- print("Launching Gradio Interface for Basic Agent Evaluation...")
240
- demo.launch(debug=True, share=False)
241
 
242
-
 
 
 
66
  return self.solve_riddle(question)
67
  return "FINAL ANSWER: NOT_A_RIDDLE"
68
 
69
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
70
+ """
71
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
72
+ and displays the results.
73
+ """
74
+ # --- Determine HF Space Runtime URL and Repo URL ---
75
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
76
+
77
+ if profile:
78
+ username= f"{profile.username}"
79
+ print(f"User logged in: {username}")
80
+ else:
81
+ print("User not logged in.")
82
+ return "Please Login to Hugging Face with the button.", None
83
+
84
+ api_url = DEFAULT_API_URL
85
+ questions_url = f"{api_url}/questions"
86
+ submit_url = f"{api_url}/submit"
87
+
88
+ # 1. Instantiate Agent ( modify this part to create your agent)
89
+ try:
90
+ agent = BasicAgent()
91
+ except Exception as e:
92
+ print(f"Error instantiating agent: {e}")
93
+ return f"Error initializing agent: {e}", None
94
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
95
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
96
+ print(agent_code)
97
+
98
+ # 2. Fetch Questions
99
+ print(f"Fetching questions from: {questions_url}")
100
+ try:
101
+ response = requests.get(questions_url, timeout=15)
102
+ response.raise_for_status()
103
+ questions_data = response.json()
104
+ if not questions_data:
105
+ print("Fetched questions list is empty.")
106
+ return "Fetched questions list is empty or invalid format.", None
107
+ print(f"Fetched {len(questions_data)} questions.")
108
+ except requests.exceptions.RequestException as e:
109
+ print(f"Error fetching questions: {e}")
110
+ return f"Error fetching questions: {e}", None
111
+ except requests.exceptions.JSONDecodeError as e:
112
+ print(f"Error decoding JSON response from questions endpoint: {e}")
113
+ print(f"Response text: {response.text[:500]}")
114
+ return f"Error decoding server response for questions: {e}", None
115
+ except Exception as e:
116
+ print(f"An unexpected error occurred fetching questions: {e}")
117
+ return f"An unexpected error occurred fetching questions: {e}", None
118
+
119
+ # 3. Run your Agent
120
+ results_log = []
121
+ answers_payload = []
122
+ print(f"Running agent on {len(questions_data)} questions...")
123
+ for item in questions_data:
124
+ task_id = item.get("task_id")
125
+ question_text = item.get("question")
126
+ if not task_id or question_text is None:
127
+ print(f"Skipping item with missing task_id or question: {item}")
128
+ continue
129
  try:
130
+ submitted_answer = agent(question_text)
131
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
132
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
133
  except Exception as e:
134
+ print(f"Error running agent on task {task_id}: {e}")
135
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
136
+
137
+ if not answers_payload:
138
+ print("Agent did not produce any answers to submit.")
139
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
140
+
141
+ # 4. Prepare Submission
142
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
143
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
144
+ print(status_update)
145
+
146
+ # 5. Submit
147
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
148
+ try:
149
+ response = requests.post(submit_url, json=submission_data, timeout=60)
150
+ response.raise_for_status()
151
+ result_data = response.json()
152
+ final_status = (
153
+ f"Submission Successful!\n"
154
+ f"User: {result_data.get('username')}\n"
155
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
156
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
157
+ f"Message: {result_data.get('message', 'No message received.')}"
158
+ )
159
+ print("Submission successful.")
160
+ results_df = pd.DataFrame(results_log)
161
+ return final_status, results_df
162
+ except requests.exceptions.HTTPError as e:
163
+ error_detail = f"Server responded with status {e.response.status_code}."
 
 
164
  try:
165
+ error_json = e.response.json()
166
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
167
+ except requests.exceptions.JSONDecodeError:
168
+ error_detail += f" Response: {e.response.text[:500]}"
169
+ status_message = f"Submission Failed: {error_detail}"
170
+ print(status_message)
171
+ results_df = pd.DataFrame(results_log)
172
+ return status_message, results_df
173
+ except requests.exceptions.Timeout:
174
+ status_message = "Submission Failed: The request timed out."
175
+ print(status_message)
176
+ results_df = pd.DataFrame(results_log)
177
+ return status_message, results_df
178
+ except requests.exceptions.RequestException as e:
179
+ status_message = f"Submission Failed: Network error - {e}"
180
+ print(status_message)
181
+ results_df = pd.DataFrame(results_log)
182
+ return status_message, results_df
183
+ except Exception as e:
184
+ status_message = f"An unexpected error occurred during submission: {e}"
185
+ print(status_message)
186
+ results_df = pd.DataFrame(results_log)
187
+ return status_message, results_df
188
+
189
+
190
+ # --- Build Gradio Interface using Blocks ---
191
+ with gr.Blocks() as demo:
192
+ gr.Markdown("# Basic Agent Evaluation Runner")
193
+ gr.Markdown(
194
+ """
195
+ **Instructions:**
196
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
197
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
198
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
199
+ ---
200
+ **Disclaimers:**
201
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
202
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
203
+ """
204
+ )
205
+
206
+ gr.LoginButton()
207
+
208
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
209
+
210
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
211
+ # Removed max_rows=10 from DataFrame constructor
212
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
213
+
214
+ run_button.click(
215
+ fn=run_and_submit_all,
216
+ outputs=[status_output, results_table]
217
+ )
218
+
219
+ if __name__ == "__main__":
220
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
221
+ # Check for SPACE_HOST and SPACE_ID at startup for information
222
+ space_host_startup = os.getenv("SPACE_HOST")
223
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
224
+
225
+ if space_host_startup:
226
+ print(f" SPACE_HOST found: {space_host_startup}")
227
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
228
+ else:
229
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
230
+
231
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
232
+ print(f"✅ SPACE_ID found: {space_id_startup}")
233
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
234
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
235
+ else:
236
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
237
+
238
+ print("-"*(60 + len(" App Starting ")) + "\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
 
240
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
241
+ demo.launch(debug=True, share=False)
242
+