Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,258 +1,73 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
-
import moviepy
|
4 |
import requests
|
|
|
5 |
import whisper
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
|
|
8 |
from duckduckgo_search import DDGS
|
9 |
from transformers import pipeline
|
10 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
-
import numpy as np
|
12 |
|
13 |
-
# --- Constants ---
|
14 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
-
|
17 |
-
class BasicAgent:
|
18 |
def __init__(self):
|
19 |
-
print("
|
20 |
-
|
21 |
-
self.
|
22 |
-
self.search_pipeline = pipeline("question-answering")
|
23 |
-
self.nlp_model = pipeline("feature-extraction") # For semantic similarity (using transformer model)
|
24 |
-
|
25 |
-
def score_search_results(self, question: str, search_results: list) -> str:
|
26 |
-
# Transform the question and results to embeddings (vector representations)
|
27 |
-
question_embedding = self.nlp_model(question)
|
28 |
-
question_embedding = np.mean(question_embedding[0], axis=0)
|
29 |
-
|
30 |
-
best_score = -1
|
31 |
-
best_answer = None
|
32 |
-
|
33 |
-
# Loop through search results and calculate similarity
|
34 |
-
for result in search_results:
|
35 |
-
result_embedding = self.nlp_model(result['body'])
|
36 |
-
result_embedding = np.mean(result_embedding[0], axis=0)
|
37 |
-
|
38 |
-
# Calculate cosine similarity
|
39 |
-
similarity = cosine_similarity([question_embedding], [result_embedding])
|
40 |
-
|
41 |
-
# Check if this result is better
|
42 |
-
if similarity > best_score:
|
43 |
-
best_score = similarity
|
44 |
-
best_answer = result['body']
|
45 |
-
|
46 |
-
return best_answer
|
47 |
-
|
48 |
-
def search(self, question: str) -> str:
|
49 |
-
try:
|
50 |
-
with DDGS() as ddgs:
|
51 |
-
results = list(ddgs.text(question, max_results=3)) # Fetch top 3 results
|
52 |
-
if results:
|
53 |
-
# Score all the results and return the best one
|
54 |
-
return self.score_search_results(question, results)
|
55 |
-
else:
|
56 |
-
return "No relevant search results found."
|
57 |
-
except Exception as e:
|
58 |
-
return f"Search error: {e}"
|
59 |
|
60 |
def call_whisper(self, video_path: str) -> str:
|
61 |
-
# Transcribe the video to text using Whisper model
|
62 |
video = moviepy.editor.VideoFileClip(video_path)
|
63 |
audio_path = "temp_audio.wav"
|
64 |
video.audio.write_audiofile(audio_path)
|
65 |
-
|
66 |
-
# Transcribe audio to text
|
67 |
result = self.whisper_model.transcribe(audio_path)
|
68 |
return result["text"]
|
69 |
|
70 |
-
def
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return transcription
|
78 |
-
|
79 |
-
# If no video is provided, search the web for an answer
|
80 |
-
search_answer = self.search(question)
|
81 |
-
print(f"Agent returning search result: {search_answer[:100]}...")
|
82 |
-
time.sleep(2)
|
83 |
-
return search_answer
|
84 |
-
|
85 |
-
|
86 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
87 |
-
"""
|
88 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
89 |
-
and displays the results.
|
90 |
-
"""
|
91 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
92 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
93 |
-
|
94 |
-
if profile:
|
95 |
-
username = f"{profile.username}"
|
96 |
-
print(f"User logged in: {username}")
|
97 |
-
else:
|
98 |
-
print("User not logged in.")
|
99 |
-
return "Please Login to Hugging Face with the button.", None
|
100 |
-
|
101 |
-
api_url = DEFAULT_API_URL
|
102 |
-
questions_url = f"{api_url}/questions"
|
103 |
-
submit_url = f"{api_url}/submit"
|
104 |
-
|
105 |
-
# 1. Instantiate Agent
|
106 |
-
try:
|
107 |
-
agent = BasicAgent()
|
108 |
-
except Exception as e:
|
109 |
-
print(f"Error instantiating agent: {e}")
|
110 |
-
return f"Error initializing agent: {e}", None
|
111 |
-
|
112 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
113 |
-
print(agent_code)
|
114 |
-
|
115 |
-
# 2. Fetch Questions
|
116 |
-
print(f"Fetching questions from: {questions_url}")
|
117 |
-
try:
|
118 |
-
response = requests.get(questions_url, timeout=15)
|
119 |
-
response.raise_for_status()
|
120 |
-
questions_data = response.json()
|
121 |
-
if not questions_data:
|
122 |
-
print("Fetched questions list is empty.")
|
123 |
-
return "Fetched questions list is empty or invalid format.", None
|
124 |
-
print(f"Fetched {len(questions_data)} questions.")
|
125 |
-
except requests.exceptions.RequestException as e:
|
126 |
-
print(f"Error fetching questions: {e}")
|
127 |
-
return f"Error fetching questions: {e}", None
|
128 |
-
except requests.exceptions.JSONDecodeError as e:
|
129 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
130 |
-
return f"Error decoding server response for questions: {e}", None
|
131 |
-
except Exception as e:
|
132 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
133 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
134 |
-
|
135 |
-
# 3. Run Agent
|
136 |
-
results_log = []
|
137 |
-
answers_payload = []
|
138 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
139 |
-
for item in questions_data:
|
140 |
-
task_id = item.get("task_id")
|
141 |
-
question_text = item.get("question")
|
142 |
-
video_link = item.get("video_link") # Assuming the question contains an optional video link
|
143 |
-
|
144 |
-
if not task_id or question_text is None:
|
145 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
146 |
-
continue
|
147 |
|
|
|
148 |
try:
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
153 |
except Exception as e:
|
154 |
-
|
155 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
156 |
|
157 |
-
|
158 |
-
print("Agent did not produce any answers to submit.")
|
159 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
160 |
-
|
161 |
-
# 4. Prepare Submission
|
162 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
163 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
164 |
-
print(status_update)
|
165 |
-
|
166 |
-
# 5. Submit
|
167 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
168 |
-
try:
|
169 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
170 |
-
response.raise_for_status()
|
171 |
-
result_data = response.json()
|
172 |
-
final_status = (
|
173 |
-
f"Submission Successful!\n"
|
174 |
-
f"User: {result_data.get('username')}\n"
|
175 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
176 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
177 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
178 |
-
)
|
179 |
-
print("Submission successful.")
|
180 |
-
results_df = pd.DataFrame(results_log)
|
181 |
-
return final_status, results_df
|
182 |
-
except requests.exceptions.HTTPError as e:
|
183 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
184 |
try:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
print(status_message)
|
191 |
-
results_df = pd.DataFrame(results_log)
|
192 |
-
return status_message, results_df
|
193 |
-
except requests.exceptions.Timeout:
|
194 |
-
status_message = "Submission Failed: The request timed out."
|
195 |
-
print(status_message)
|
196 |
-
results_df = pd.DataFrame(results_log)
|
197 |
-
return status_message, results_df
|
198 |
-
except requests.exceptions.RequestException as e:
|
199 |
-
status_message = f"Submission Failed: Network error - {e}"
|
200 |
-
print(status_message)
|
201 |
-
results_df = pd.DataFrame(results_log)
|
202 |
-
return status_message, results_df
|
203 |
-
except Exception as e:
|
204 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
205 |
-
print(status_message)
|
206 |
-
results_df = pd.DataFrame(results_log)
|
207 |
-
return status_message, results_df
|
208 |
-
|
209 |
-
|
210 |
-
# --- Build Gradio Interface using Blocks ---
|
211 |
-
with gr.Blocks() as demo:
|
212 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
213 |
-
gr.Markdown(
|
214 |
-
"""
|
215 |
-
**Instructions:**
|
216 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
217 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
218 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
219 |
-
---
|
220 |
-
**Disclaimers:**
|
221 |
-
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
222 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
223 |
-
"""
|
224 |
-
)
|
225 |
-
|
226 |
-
gr.LoginButton()
|
227 |
-
|
228 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
229 |
|
230 |
-
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
outputs=[status_output, results_table]
|
236 |
-
)
|
237 |
|
238 |
-
if
|
239 |
-
|
240 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
241 |
-
space_id_startup = os.getenv("SPACE_ID")
|
242 |
|
243 |
-
|
244 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
245 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
246 |
-
else:
|
247 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
248 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
249 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
250 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
251 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
252 |
-
else:
|
253 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
254 |
|
255 |
-
|
|
|
|
|
256 |
|
257 |
-
|
258 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
import requests
|
4 |
+
import moviepy.editor
|
5 |
import whisper
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
+
import wikipedia
|
9 |
from duckduckgo_search import DDGS
|
10 |
from transformers import pipeline
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
+
class SmartAgent:
|
|
|
14 |
def __init__(self):
|
15 |
+
print("SmartAgent initialized.")
|
16 |
+
self.whisper_model = whisper.load_model("base")
|
17 |
+
self.qa_pipeline = pipeline("question-answering")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def call_whisper(self, video_path: str) -> str:
|
|
|
20 |
video = moviepy.editor.VideoFileClip(video_path)
|
21 |
audio_path = "temp_audio.wav"
|
22 |
video.audio.write_audiofile(audio_path)
|
|
|
|
|
23 |
result = self.whisper_model.transcribe(audio_path)
|
24 |
return result["text"]
|
25 |
|
26 |
+
def classify_question(self, question: str) -> str:
|
27 |
+
q = question.lower()
|
28 |
+
if "how many" in q or "number of" in q:
|
29 |
+
return "count"
|
30 |
+
elif "when" in q or "what year" in q:
|
31 |
+
return "date"
|
32 |
+
return "open"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
def wiki_search(self, question: str) -> str:
|
35 |
try:
|
36 |
+
results = wikipedia.search(question, results=1)
|
37 |
+
if not results:
|
38 |
+
return ""
|
39 |
+
page = wikipedia.page(results[0])
|
40 |
+
return page.content
|
41 |
except Exception as e:
|
42 |
+
return ""
|
|
|
43 |
|
44 |
+
def fallback_duckduckgo(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
+
with DDGS() as ddgs:
|
47 |
+
results = list(ddgs.text(question, max_results=3))
|
48 |
+
return results[0]["body"] if results else ""
|
49 |
+
except Exception as e:
|
50 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def answer_with_context(self, question: str, context: str) -> str:
|
53 |
+
try:
|
54 |
+
if not context.strip():
|
55 |
+
return "No reliable context found."
|
56 |
+
result = self.qa_pipeline(question=question, context=context)
|
57 |
+
return result["answer"]
|
58 |
+
except Exception as e:
|
59 |
+
return f"QA error: {e}"
|
60 |
|
61 |
+
def __call__(self, question: str, video_path: str = None) -> str:
|
62 |
+
print(f"Agent received question: {question[:60]}...")
|
|
|
|
|
63 |
|
64 |
+
if video_path:
|
65 |
+
return self.call_whisper(video_path)
|
|
|
|
|
66 |
|
67 |
+
classification = self.classify_question(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
context = self.wiki_search(question)
|
70 |
+
if not context:
|
71 |
+
context = self.fallback_duckduckgo(question)
|
72 |
|
73 |
+
return self.answer_with_context(question, context)
|
|