Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import string
|
5 |
-
import warnings
|
6 |
-
import pandas as pd
|
7 |
import re
|
8 |
-
from huggingface_hub import login
|
9 |
-
from groq import Groq
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# --- Basic Agent Definition ---
|
15 |
class BasicAgent:
|
16 |
def __init__(self):
|
17 |
print("BasicAgent initialized.")
|
@@ -28,11 +61,53 @@ class BasicAgent:
|
|
28 |
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
29 |
to be put in the list is a number or a string."""
|
30 |
)
|
|
|
31 |
|
32 |
def format_final_answer(self, answer: str) -> str:
|
33 |
cleaned = " ".join(answer.split())
|
34 |
return f"FINAL ANSWER: {cleaned}"
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def check_commutativity(self):
|
37 |
S = ['a', 'b', 'c', 'd', 'e']
|
38 |
counter_example_elements = set()
|
@@ -75,126 +150,4 @@ class BasicAgent:
|
|
75 |
}
|
76 |
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
|
77 |
return f"FINAL ANSWER: {opposite.upper()}"
|
78 |
-
|
79 |
-
|
80 |
-
def query_groq(self, question: str) -> str:
|
81 |
-
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
|
82 |
-
try:
|
83 |
-
response = self.client.chat.completions.create(
|
84 |
-
model="llama3-8b-8192",
|
85 |
-
messages=[{"role": "user", "content": full_prompt}]
|
86 |
-
)
|
87 |
-
answer = response.choices[0].message.content
|
88 |
-
print(f"[Groq Raw Response]: {answer}")
|
89 |
-
if "FINAL ANSWER: " in answer:
|
90 |
-
return answer.split("FINAL ANSWER: ")[-1].strip().upper()
|
91 |
-
else:
|
92 |
-
return self.format_final_answer(answer).upper()
|
93 |
-
except Exception as e:
|
94 |
-
print(f"[Groq ERROR]: {e}")
|
95 |
-
return self.format_final_answer("GROQ_ERROR")
|
96 |
-
|
97 |
-
def __call__(self, question: str) -> str:
|
98 |
-
print(f"Received question: {question[:50]}...")
|
99 |
-
if "commutative" in question.lower():
|
100 |
-
return self.check_commutativity()
|
101 |
-
if self.maybe_reversed(question):
|
102 |
-
print("Detected likely reversed riddle.")
|
103 |
-
return self.solve_riddle(question)
|
104 |
-
return self.query_groq(question)
|
105 |
-
|
106 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
107 |
-
space_id = os.getenv("SPACE_ID")
|
108 |
-
if profile:
|
109 |
-
username = f"{profile.username}"
|
110 |
-
print("User logged in.")
|
111 |
-
else:
|
112 |
-
print("User not logged in.")
|
113 |
-
return "Please Login to Hugging Face with the button.", None
|
114 |
-
|
115 |
-
api_url = DEFAULT_API_URL
|
116 |
-
questions_url = f"{api_url}/questions"
|
117 |
-
submit_url = f"{api_url}/submit"
|
118 |
-
|
119 |
-
try:
|
120 |
-
agent = BasicAgent()
|
121 |
-
except Exception as e:
|
122 |
-
return f"Error initializing agent: {e}", None
|
123 |
-
|
124 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
125 |
-
try:
|
126 |
-
response = requests.get(questions_url, timeout=15)
|
127 |
-
response.raise_for_status()
|
128 |
-
questions_data = response.json()
|
129 |
-
if not questions_data:
|
130 |
-
return "Fetched questions list is empty or invalid format.", None
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
return f"Error fetching questions: {e}", None
|
133 |
-
|
134 |
-
results_log = []
|
135 |
-
answers_payload = []
|
136 |
-
for item in questions_data:
|
137 |
-
task_id = item.get("task_id")
|
138 |
-
question_text = item.get("question")
|
139 |
-
|
140 |
-
if not task_id or question_text is None:
|
141 |
-
continue
|
142 |
-
try:
|
143 |
-
submitted_answer = agent(question_text)
|
144 |
-
print(f"Q: {question_text}")
|
145 |
-
print(f"Predicted: {submitted_answer}")
|
146 |
-
|
147 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
148 |
-
results_log.append({
|
149 |
-
"Task ID": task_id,
|
150 |
-
"Question": question_text,
|
151 |
-
"Submitted Answer": submitted_answer
|
152 |
-
})
|
153 |
-
except Exception as e:
|
154 |
-
results_log.append({
|
155 |
-
"Task ID": task_id,
|
156 |
-
"Question": question_text,
|
157 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
158 |
-
})
|
159 |
-
|
160 |
-
if not answers_payload:
|
161 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
162 |
-
|
163 |
-
submission_data = {
|
164 |
-
"username": username.strip(),
|
165 |
-
"agent_code": agent_code,
|
166 |
-
"answers": answers_payload
|
167 |
-
}
|
168 |
-
|
169 |
-
try:
|
170 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
171 |
-
response.raise_for_status()
|
172 |
-
result_data = response.json()
|
173 |
-
print(result_data)
|
174 |
-
final_status = (
|
175 |
-
f"Submission Successful!\n"
|
176 |
-
f"User: {result_data.get('username')}\n"
|
177 |
-
f"Overall Score: {result_data.get('score', '?')}% "
|
178 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
179 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
180 |
-
)
|
181 |
-
return final_status, pd.DataFrame(results_log)
|
182 |
-
except Exception as e:
|
183 |
-
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
184 |
-
|
185 |
-
# --- Build Gradio Interface ---
|
186 |
-
with gr.Blocks() as demo:
|
187 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
188 |
-
gr.LoginButton()
|
189 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
190 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", max_lines=5, interactive=False, max_length=200)
|
191 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
192 |
-
|
193 |
-
run_button.click(
|
194 |
-
fn=run_and_submit_all,
|
195 |
-
outputs=[status_output, results_table]
|
196 |
-
)
|
197 |
-
|
198 |
-
if __name__ == "__main__":
|
199 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
200 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
2 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
3 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
4 |
+
from langchain_core.tools import tool
|
5 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
6 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
7 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
+
from groq import Groq
|
9 |
import os
|
|
|
|
|
|
|
|
|
|
|
10 |
import re
|
|
|
|
|
11 |
|
12 |
+
# Define the tools
|
13 |
+
@tool
|
14 |
+
def wiki_search(query: str) -> str:
|
15 |
+
"""Search Wikipedia for a query and return up to 2 results."""
|
16 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
17 |
+
return "\n\n".join([doc.page_content for doc in docs])
|
18 |
+
|
19 |
+
@tool
|
20 |
+
def web_search(query: str) -> str:
|
21 |
+
"""Search the web using Tavily."""
|
22 |
+
docs = TavilySearchResults(max_results=3).invoke(query)
|
23 |
+
return "\n\n".join([doc.page_content for doc in docs])
|
24 |
+
|
25 |
+
@tool
|
26 |
+
def arvix_search(query: str) -> str:
|
27 |
+
"""Search Arxiv and return up to 3 results."""
|
28 |
+
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
29 |
+
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
30 |
+
|
31 |
+
# Tool-based LangGraph builder
|
32 |
+
def build_tool_graph(system_prompt):
|
33 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
34 |
+
llm_with_tools = llm.bind_tools([wiki_search, web_search, arvix_search])
|
35 |
+
|
36 |
+
def assistant(state: MessagesState):
|
37 |
+
return {"messages": [llm_with_tools.invoke(state["messages"]) ]}
|
38 |
+
|
39 |
+
builder = StateGraph(MessagesState)
|
40 |
+
builder.add_node("assistant", assistant)
|
41 |
+
builder.add_node("tools", ToolNode([wiki_search, web_search, arvix_search]))
|
42 |
+
builder.set_entry_point("assistant")
|
43 |
+
builder.set_finish_point("assistant")
|
44 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
45 |
+
builder.add_edge("tools", "assistant")
|
46 |
+
return builder.compile()
|
47 |
|
|
|
48 |
class BasicAgent:
|
49 |
def __init__(self):
|
50 |
print("BasicAgent initialized.")
|
|
|
61 |
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
62 |
to be put in the list is a number or a string."""
|
63 |
)
|
64 |
+
self.tool_chain = build_tool_graph(self.agent_prompt)
|
65 |
|
66 |
def format_final_answer(self, answer: str) -> str:
|
67 |
cleaned = " ".join(answer.split())
|
68 |
return f"FINAL ANSWER: {cleaned}"
|
69 |
|
70 |
+
def query_groq(self, question: str) -> str:
|
71 |
+
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
|
72 |
+
try:
|
73 |
+
response = self.client.chat.completions.create(
|
74 |
+
model="llama3-8b-8192",
|
75 |
+
messages=[{"role": "user", "content": full_prompt}]
|
76 |
+
)
|
77 |
+
answer = response.choices[0].message.content
|
78 |
+
print(f"[Groq Raw Response]: {answer}")
|
79 |
+
return self.format_final_answer(answer).upper()
|
80 |
+
except Exception as e:
|
81 |
+
print(f"[Groq ERROR]: {e}")
|
82 |
+
return self.format_final_answer("GROQ_ERROR")
|
83 |
+
|
84 |
+
def query_tools(self, question: str) -> str:
|
85 |
+
try:
|
86 |
+
input_state = {
|
87 |
+
"messages": [
|
88 |
+
SystemMessage(content=self.agent_prompt),
|
89 |
+
HumanMessage(content=question)
|
90 |
+
]
|
91 |
+
}
|
92 |
+
result = self.tool_chain.invoke(input_state)
|
93 |
+
final_msg = result["messages"][-1].content
|
94 |
+
print(f"[LangGraph Final Response]: {final_msg}")
|
95 |
+
return self.format_final_answer(final_msg)
|
96 |
+
except Exception as e:
|
97 |
+
print(f"[LangGraph ERROR]: {e}")
|
98 |
+
return self.format_final_answer("TOOL_ERROR")
|
99 |
+
|
100 |
+
def __call__(self, question: str) -> str:
|
101 |
+
print(f"Received question: {question[:50]}...")
|
102 |
+
if "commutative" in question.lower():
|
103 |
+
return self.check_commutativity()
|
104 |
+
if self.maybe_reversed(question):
|
105 |
+
print("Detected likely reversed riddle.")
|
106 |
+
return self.solve_riddle(question)
|
107 |
+
if "use tools" in question.lower():
|
108 |
+
return self.query_tools(question)
|
109 |
+
return self.query_groq(question)
|
110 |
+
|
111 |
def check_commutativity(self):
|
112 |
S = ['a', 'b', 'c', 'd', 'e']
|
113 |
counter_example_elements = set()
|
|
|
150 |
}
|
151 |
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
|
152 |
return f"FINAL ANSWER: {opposite.upper()}"
|
153 |
+
return self.format_final_answer("COULD_NOT_SOLVE")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|