Spaces:
Runtime error
Runtime error
start from scratch
Browse files
app.py
CHANGED
@@ -1,304 +1,175 @@
|
|
1 |
-
import requests
|
2 |
-
import string
|
3 |
-
import inspect
|
4 |
import os
|
5 |
-
import re
|
6 |
-
import spacy
|
7 |
-
from transformers import pipeline
|
8 |
-
from duckduckgo_search import DDGS
|
9 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
-
import numpy as np
|
11 |
-
import whisper
|
12 |
-
import moviepy
|
13 |
import gradio as gr
|
|
|
|
|
14 |
import pandas as pd
|
15 |
-
from
|
16 |
-
from transformers import AutoTokenizer, AutoModel
|
17 |
-
import torch
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
21 |
print("BasicAgent initialized.")
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
return chunks
|
52 |
-
|
53 |
-
def answer_question(self, question: str, context: str) -> str:
|
54 |
-
try:
|
55 |
-
context_chunks = self.split_text_into_chunks(context, max_length=512)
|
56 |
-
answers = []
|
57 |
-
for chunk in context_chunks:
|
58 |
-
answer = self.qa_pipeline(question=question, context=chunk)["answer"]
|
59 |
-
answers.append(answer)
|
60 |
-
|
61 |
-
return " ".join(answers) # Combine answers from chunks
|
62 |
-
except Exception as e:
|
63 |
-
return f"Error answering question: {e}"
|
64 |
-
|
65 |
-
def extract_named_entities(self, text):
|
66 |
-
entities = self.ner_pipeline(text)
|
67 |
-
return [e["word"] for e in entities if e["entity_group"] == "PER"]
|
68 |
-
|
69 |
-
def extract_numbers(self, text):
|
70 |
-
return re.findall(r"\d+", text)
|
71 |
-
|
72 |
-
def extract_keywords(self, text):
|
73 |
-
doc = self.spacy(text)
|
74 |
-
return [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
|
75 |
-
|
76 |
-
def call_whisper(self, video_path: str) -> str:
|
77 |
-
video = moviepy.editor.VideoFileClip(video_path)
|
78 |
-
audio_path = "temp_audio.wav"
|
79 |
-
video.audio.write_audiofile(audio_path)
|
80 |
-
result = self.whisper_model.transcribe(audio_path)
|
81 |
-
os.remove(audio_path)
|
82 |
-
return result["text"]
|
83 |
-
|
84 |
-
def search(self, question: str) -> str:
|
85 |
-
try:
|
86 |
-
with DDGS() as ddgs:
|
87 |
-
results = list(ddgs.text(question, max_results=3))
|
88 |
-
if not results:
|
89 |
-
return "No relevant search results found."
|
90 |
-
context = results[0]["body"]
|
91 |
-
return context
|
92 |
-
except Exception as e:
|
93 |
-
return f"Search error: {e}"
|
94 |
-
|
95 |
-
def answer_question(self, question: str, context: str) -> str:
|
96 |
-
try:
|
97 |
-
return self.qa_pipeline(question=question, context=context)["answer"]
|
98 |
-
except:
|
99 |
-
return context # Fallback to context if QA fails
|
100 |
-
|
101 |
-
def handle_logic_riddles(self, question: str) -> str | None:
|
102 |
-
# Normalize the input
|
103 |
-
q = question.lower().strip()
|
104 |
-
q = q.translate(str.maketrans("", "", string.punctuation)) # remove punctuation
|
105 |
-
q = re.sub(r"\s+", " ", q) # normalize multiple spaces
|
106 |
-
|
107 |
-
logic_patterns = [
|
108 |
-
{
|
109 |
-
"pattern": r"opposite of the word left",
|
110 |
-
"answer": "right"
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"pattern": r"what comes after a",
|
114 |
-
"answer": "b"
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"pattern": r"first letter of the alphabet",
|
118 |
-
"answer": "a"
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"pattern": r"what is the color of the clear sky",
|
122 |
-
"answer": "blue"
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"pattern": r"how many sides does a triangle have",
|
126 |
-
"answer": "3"
|
127 |
-
},
|
128 |
-
{
|
129 |
-
"pattern": r"how many legs does a spider have",
|
130 |
-
"answer": "8"
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"pattern": r"what is 2 \+ 2",
|
134 |
-
"answer": "4"
|
135 |
-
},
|
136 |
-
{
|
137 |
-
"pattern": r"what is the opposite of up",
|
138 |
-
"answer": "down"
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"pattern": r"if you understand this sentence.*opposite.*left",
|
142 |
-
"answer": "right"
|
143 |
-
}
|
144 |
-
]
|
145 |
-
|
146 |
-
for item in logic_patterns:
|
147 |
-
if re.search(item["pattern"], q, re.IGNORECASE):
|
148 |
-
return item["answer"]
|
149 |
-
|
150 |
-
return None
|
151 |
-
|
152 |
-
|
153 |
-
def solve_riddle(self, riddle: str) -> str:
|
154 |
-
"""Fallback riddle solver using QA pipeline with general logic context."""
|
155 |
-
riddle_context = (
|
156 |
-
"You are a riddle-solving assistant. Try to give a short and logical answer to riddles.\n"
|
157 |
-
"Examples:\n"
|
158 |
-
"Q: What has keys but can't open locks?\nA: A piano\n"
|
159 |
-
"Q: What runs but never walks?\nA: Water\n"
|
160 |
-
"Q: What comes once in a minute, twice in a moment, but never in a thousand years?\nA: The letter M\n"
|
161 |
-
f"Q: {riddle}\nA:"
|
162 |
-
)
|
163 |
-
try:
|
164 |
-
result = self.qa_pipeline(question=riddle, context=riddle_context)
|
165 |
-
return result["answer"]
|
166 |
-
except Exception as e:
|
167 |
-
return f"Could not solve riddle: {e}"
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
def __call__(self, question: str, video_path: str = None) -> str:
|
172 |
-
print(f"Agent received question: {question[:60]}...")
|
173 |
-
|
174 |
-
# Handle logic/riddle questions first
|
175 |
-
logic_answer = self.handle_logic_riddles(question)
|
176 |
-
if logic_answer is not None:
|
177 |
-
return f"🧠 Logic Answer: {logic_answer}"
|
178 |
-
else:
|
179 |
-
riddle_guess = self.solve_riddle(question)
|
180 |
-
return f"🤖 Riddle Guess: {riddle_guess}"
|
181 |
-
|
182 |
-
if video_path:
|
183 |
-
transcription = self.call_whisper(video_path)
|
184 |
-
print(f"Transcribed video: {transcription[:100]}...")
|
185 |
-
return transcription
|
186 |
-
|
187 |
-
context = self.search(question)
|
188 |
-
answer = self.answer_question(question, context)
|
189 |
-
q_lower = question.lower()
|
190 |
-
|
191 |
-
# Enhanced formatting based on question type
|
192 |
-
if "who" in q_lower:
|
193 |
-
people = self.extract_named_entities(context)
|
194 |
-
return f"👤 Who: {', '.join(people) if people else 'No person found'}\n\n🧠 Answer: {answer}"
|
195 |
-
|
196 |
-
elif "how many" in q_lower:
|
197 |
-
numbers = self.extract_numbers(context)
|
198 |
-
return f"🔢 How many: {', '.join(numbers) if numbers else 'No numbers found'}\n\n🧠 Answer: {answer}"
|
199 |
-
|
200 |
-
elif "how" in q_lower:
|
201 |
-
return f"⚙️ How: {answer}"
|
202 |
-
|
203 |
-
elif "what" in q_lower or "where" in q_lower:
|
204 |
-
keywords = self.extract_keywords(context)
|
205 |
-
return f"🗝️ Keywords: {', '.join(keywords[:5])}\n\n🧠 Answer: {answer}"
|
206 |
-
|
207 |
-
else:
|
208 |
-
return f"🧠 Answer: {answer}"
|
209 |
-
|
210 |
-
# --- Submission Function ---
|
211 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
212 |
-
|
213 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
214 |
-
space_id = os.getenv("SPACE_ID")
|
215 |
|
216 |
if profile:
|
217 |
-
username
|
218 |
print(f"User logged in: {username}")
|
219 |
else:
|
|
|
220 |
return "Please Login to Hugging Face with the button.", None
|
221 |
|
222 |
api_url = DEFAULT_API_URL
|
223 |
questions_url = f"{api_url}/questions"
|
224 |
submit_url = f"{api_url}/submit"
|
225 |
|
|
|
226 |
try:
|
227 |
agent = BasicAgent()
|
228 |
except Exception as e:
|
|
|
229 |
return f"Error initializing agent: {e}", None
|
230 |
-
|
231 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
232 |
-
print(
|
233 |
|
|
|
|
|
234 |
try:
|
235 |
response = requests.get(questions_url, timeout=15)
|
236 |
response.raise_for_status()
|
237 |
questions_data = response.json()
|
|
|
|
|
|
|
238 |
print(f"Fetched {len(questions_data)} questions.")
|
239 |
-
except
|
|
|
240 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
|
|
242 |
results_log = []
|
243 |
answers_payload = []
|
244 |
-
|
245 |
for item in questions_data:
|
246 |
task_id = item.get("task_id")
|
247 |
question_text = item.get("question")
|
248 |
-
video_link = item.get("video_link")
|
249 |
-
|
250 |
if not task_id or question_text is None:
|
|
|
251 |
continue
|
252 |
-
|
253 |
try:
|
254 |
-
submitted_answer = agent(question_text
|
255 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
256 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
257 |
except Exception as e:
|
258 |
-
|
|
|
259 |
|
260 |
if not answers_payload:
|
261 |
-
|
|
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
}
|
268 |
|
|
|
|
|
269 |
try:
|
270 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
271 |
response.raise_for_status()
|
272 |
result_data = response.json()
|
273 |
final_status = (
|
274 |
-
f"
|
275 |
f"User: {result_data.get('username')}\n"
|
276 |
-
f"Score: {result_data.get('score', 'N/A')}% "
|
277 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
|
278 |
-
f"Message: {result_data.get('message', '')}"
|
279 |
)
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
except Exception as e:
|
282 |
-
|
|
|
|
|
|
|
283 |
|
284 |
|
285 |
-
# --- Gradio Interface ---
|
286 |
with gr.Blocks() as demo:
|
287 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
288 |
gr.Markdown(
|
289 |
-
""
|
290 |
-
|
291 |
-
|
292 |
-
2. Log in to Hugging Face with the button below.
|
293 |
-
3. Click 'Run Evaluation & Submit All Answers' to evaluate and submit your agent.
|
294 |
-
---
|
295 |
-
**Note:** This process may take several minutes depending on the number of questions.
|
296 |
-
"""
|
297 |
)
|
298 |
|
299 |
gr.LoginButton()
|
|
|
300 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
301 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
302 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
303 |
|
304 |
run_button.click(
|
@@ -306,22 +177,26 @@ with gr.Blocks() as demo:
|
|
306 |
outputs=[status_output, results_table]
|
307 |
)
|
308 |
|
309 |
-
|
310 |
if __name__ == "__main__":
|
311 |
-
print("-"
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
print(f"
|
|
|
318 |
else:
|
319 |
-
print("ℹ️
|
320 |
|
321 |
-
if
|
322 |
-
print(f"✅ SPACE_ID: {
|
323 |
-
print(f"
|
|
|
324 |
else:
|
325 |
-
print("ℹ️
|
|
|
|
|
326 |
|
|
|
327 |
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
import pandas as pd
|
6 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
|
|
|
|
7 |
|
8 |
+
# (Keep Constants and BasicAgent class as is)
|
9 |
+
# --- Constants ---
|
10 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
+
|
12 |
+
# --- Basic Agent Definition ---
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
+
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())
|
17 |
+
|
18 |
+
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and
|
19 |
+
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
20 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
|
21 |
+
list of numbers and/or strings.
|
22 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or
|
23 |
+
percent sign unless specified otherwise.
|
24 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
|
25 |
+
digits in plain text unless specified otherwise.
|
26 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element
|
27 |
+
to be put in the list is a number or a string.
|
28 |
+
"""
|
29 |
+
self.agent.prompt_templates["system_prompt"] = self.agent.prompt_templates["system_prompt"] + SYSTEM_PROMPT
|
30 |
+
|
31 |
+
def __call__(self, question: str) -> str:
|
32 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
33 |
+
final_answer = self.agent.run(question)
|
34 |
+
print(f"Agent returning final answer: {final_answer}")
|
35 |
+
return final_answer
|
36 |
+
|
37 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
38 |
+
"""
|
39 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
40 |
+
and displays the results.
|
41 |
+
"""
|
42 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
43 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
if profile:
|
46 |
+
username= f"{profile.username}"
|
47 |
print(f"User logged in: {username}")
|
48 |
else:
|
49 |
+
print("User not logged in.")
|
50 |
return "Please Login to Hugging Face with the button.", None
|
51 |
|
52 |
api_url = DEFAULT_API_URL
|
53 |
questions_url = f"{api_url}/questions"
|
54 |
submit_url = f"{api_url}/submit"
|
55 |
|
56 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
57 |
try:
|
58 |
agent = BasicAgent()
|
59 |
except Exception as e:
|
60 |
+
print(f"Error instantiating agent: {e}")
|
61 |
return f"Error initializing agent: {e}", None
|
62 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
63 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
64 |
+
print(agent_code)
|
65 |
|
66 |
+
# 2. Fetch Questions
|
67 |
+
print(f"Fetching questions from: {questions_url}")
|
68 |
try:
|
69 |
response = requests.get(questions_url, timeout=15)
|
70 |
response.raise_for_status()
|
71 |
questions_data = response.json()
|
72 |
+
if not questions_data:
|
73 |
+
print("Fetched questions list is empty.")
|
74 |
+
return "Fetched questions list is empty or invalid format.", None
|
75 |
print(f"Fetched {len(questions_data)} questions.")
|
76 |
+
except requests.exceptions.RequestException as e:
|
77 |
+
print(f"Error fetching questions: {e}")
|
78 |
return f"Error fetching questions: {e}", None
|
79 |
+
except requests.exceptions.JSONDecodeError as e:
|
80 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
81 |
+
print(f"Response text: {response.text[:500]}")
|
82 |
+
return f"Error decoding server response for questions: {e}", None
|
83 |
+
except Exception as e:
|
84 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
85 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
86 |
|
87 |
+
# 3. Run your Agent
|
88 |
results_log = []
|
89 |
answers_payload = []
|
90 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
91 |
for item in questions_data:
|
92 |
task_id = item.get("task_id")
|
93 |
question_text = item.get("question")
|
|
|
|
|
94 |
if not task_id or question_text is None:
|
95 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
96 |
continue
|
|
|
97 |
try:
|
98 |
+
submitted_answer = agent(question_text)
|
99 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
100 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
101 |
except Exception as e:
|
102 |
+
print(f"Error running agent on task {task_id}: {e}")
|
103 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
104 |
|
105 |
if not answers_payload:
|
106 |
+
print("Agent did not produce any answers to submit.")
|
107 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
108 |
|
109 |
+
# 4. Prepare Submission
|
110 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
111 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
112 |
+
print(status_update)
|
|
|
113 |
|
114 |
+
# 5. Submit
|
115 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
116 |
try:
|
117 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
118 |
response.raise_for_status()
|
119 |
result_data = response.json()
|
120 |
final_status = (
|
121 |
+
f"Submission Successful!\n"
|
122 |
f"User: {result_data.get('username')}\n"
|
123 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
124 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
125 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
126 |
)
|
127 |
+
print("Submission successful.")
|
128 |
+
results_df = pd.DataFrame(results_log)
|
129 |
+
return final_status, results_df
|
130 |
+
except requests.exceptions.HTTPError as e:
|
131 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
132 |
+
try:
|
133 |
+
error_json = e.response.json()
|
134 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
135 |
+
except requests.exceptions.JSONDecodeError:
|
136 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
137 |
+
status_message = f"Submission Failed: {error_detail}"
|
138 |
+
print(status_message)
|
139 |
+
results_df = pd.DataFrame(results_log)
|
140 |
+
return status_message, results_df
|
141 |
+
except requests.exceptions.Timeout:
|
142 |
+
status_message = "Submission Failed: The request timed out."
|
143 |
+
print(status_message)
|
144 |
+
results_df = pd.DataFrame(results_log)
|
145 |
+
return status_message, results_df
|
146 |
+
except requests.exceptions.RequestException as e:
|
147 |
+
status_message = f"Submission Failed: Network error - {e}"
|
148 |
+
print(status_message)
|
149 |
+
results_df = pd.DataFrame(results_log)
|
150 |
+
return status_message, results_df
|
151 |
except Exception as e:
|
152 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
153 |
+
print(status_message)
|
154 |
+
results_df = pd.DataFrame(results_log)
|
155 |
+
return status_message, results_df
|
156 |
|
157 |
|
158 |
+
# --- Build Gradio Interface using Blocks ---
|
159 |
with gr.Blocks() as demo:
|
160 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
161 |
gr.Markdown(
|
162 |
+
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. "
|
163 |
+
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
164 |
+
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
|
|
|
|
|
|
|
|
|
|
165 |
)
|
166 |
|
167 |
gr.LoginButton()
|
168 |
+
|
169 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
170 |
+
|
171 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
172 |
+
# Removed max_rows=10 from DataFrame constructor
|
173 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
174 |
|
175 |
run_button.click(
|
|
|
177 |
outputs=[status_output, results_table]
|
178 |
)
|
179 |
|
|
|
180 |
if __name__ == "__main__":
|
181 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
182 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
183 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
184 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
185 |
+
|
186 |
+
if space_host_startup:
|
187 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
188 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
189 |
else:
|
190 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
191 |
|
192 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
193 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
194 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
195 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
196 |
else:
|
197 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
198 |
+
|
199 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
200 |
|
201 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
202 |
demo.launch(debug=True, share=False)
|