Toumaima commited on
Commit
2e72f39
·
verified ·
1 Parent(s): 372022a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -159
app.py CHANGED
@@ -4,181 +4,45 @@ import requests
4
  import pandas as pd
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
- # ---------- Imports for Advanced Agent ----------
8
- import re
9
- from langgraph.graph import StateGraph, MessagesState
10
- from langgraph.prebuilt import tools_condition, ToolNode
11
- from langchain_core.messages import SystemMessage, HumanMessage
12
- from langchain_core.tools import tool
13
- from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
14
- from langchain_community.tools.tavily_search import TavilySearchResults
15
- from groq import Groq
16
-
17
  # --- Constants ---
18
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
19
 
20
- # ---------- Tools ----------
21
- from langchain_core.tools import tool
22
- from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
23
- from langchain_community.tools.tavily_search import TavilySearchResults
24
-
25
- @tool
26
- def wiki_search(query: str) -> str:
27
- """Search Wikipedia for a given query and return content from up to 2 relevant pages."""
28
- docs = WikipediaLoader(query=query, load_max_docs=2).load()
29
- return "\n\n".join([doc.page_content for doc in docs])
30
-
31
- @tool
32
- def web_search(query: str) -> str:
33
- """Search the web using the Tavily API and return content from up to 3 search results."""
34
- docs = TavilySearchResults(max_results=3).invoke(query)
35
- return "\n\n".join([doc.page_content for doc in docs])
36
-
37
- @tool
38
- def arvix_search(query: str) -> str:
39
- """Search academic papers on Arxiv for a given query and return up to 3 result summaries."""
40
- docs = ArxivLoader(query=query, load_max_docs=3).load()
41
- return "\n\n".join([doc.page_content[:1000] for doc in docs])
42
-
43
- # Tool-based LangGraph builder
44
- def build_tool_graph(system_prompt):
45
- llm = AutoModelForCausalLM.from_pretrained("gpt2") # Load Hugging Face GPT-2 model
46
- tokenizer = AutoTokenizer.from_pretrained("gpt2")
47
-
48
- def assistant(state: MessagesState):
49
- input_text = state["messages"][-1]["content"]
50
- inputs = tokenizer(input_text, return_tensors="pt")
51
- outputs = llm.generate(**inputs)
52
- result = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
- return {"messages": [{"content": result}]}
54
-
55
- builder = StateGraph(MessagesState)
56
- builder.add_node("assistant", assistant)
57
- builder.add_node("tools", ToolNode([wiki_search, web_search, arvix_search]))
58
- builder.set_entry_point("assistant")
59
- builder.set_finish_point("assistant")
60
- builder.add_conditional_edges("assistant", tools_condition)
61
- builder.add_edge("tools", "assistant")
62
- return builder.compile()
63
-
64
-
65
- # --- Advanced BasicAgent Class ---
66
  class BasicAgent:
67
  def __init__(self):
68
  print("BasicAgent initialized.")
69
- self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
70
  self.agent_prompt = (
71
  """You are a general AI assistant. I will ask you a question. Report your thoughts, and
72
- finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
73
- YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
74
- list of numbers and/or strings.
75
- If you are asked for a number, don't use comma to write your number neither use units such as $
76
- or percent sign unless specified otherwise.
77
- If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
78
- digits in plain text unless specified otherwise.
79
- If you are asked for a comma separated list, apply the above rules depending of whether the element
80
- to be put in the list is a number or a string."""
81
  )
82
- self.tool_chain = build_tool_graph(self.agent_prompt)
83
-
84
- def format_final_answer(self, answer: str) -> str:
85
- cleaned = " ".join(answer.split())
86
- match = re.search(r"FINAL ANSWER:\s*(.*)", cleaned, re.IGNORECASE)
87
- return f"FINAL ANSWER: {match.group(1).strip()}" if match else f"FINAL ANSWER: {cleaned}"
88
-
89
  def query_groq(self, question: str) -> str:
90
- full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
91
- try:
92
- response = self.client.chat.completions.create(
93
- model="llama3-8b-8192",
94
- messages=[{"role": "user", "content": full_prompt}]
95
- )
96
- answer = response.choices[0].message.content
97
- print(f"[Groq Raw Response]: {answer}")
98
- return self.format_final_answer(answer).upper()
99
- except Exception as e:
100
- print(f"[Groq ERROR]: {e}")
101
- return self.format_final_answer("GROQ_ERROR")
102
 
103
  def query_tools(self, question: str) -> str:
104
- try:
105
- input_state = {
106
- "messages": [
107
- SystemMessage(content=self.agent_prompt),
108
- HumanMessage(content=question)
109
- ]
110
- }
111
- result = self.tool_chain.invoke(input_state)
112
- final_msg = result["messages"][-1].content
113
- print(f"[LangGraph Final Response]: {final_msg}")
114
- return self.format_final_answer(final_msg)
115
- except Exception as e:
116
- print(f"[LangGraph ERROR]: {e}")
117
- return self.format_final_answer("TOOL_ERROR")
118
 
119
  def __call__(self, question: str) -> str:
120
- print(f"Received question: {question[:50]}...")
121
- if "commutative" in question.lower():
122
- return self.check_commutativity()
123
- if self.maybe_reversed(question):
124
- print("Detected likely reversed riddle.")
125
- return self.solve_riddle(question)
126
  if "use tools" in question.lower():
127
  return self.query_tools(question)
128
  return self.query_groq(question)
129
 
130
- def check_commutativity(self):
131
- S = ['a', 'b', 'c', 'd', 'e']
132
- counter_example_elements = set()
133
- index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
134
- self.operation_table = [
135
- ['a', 'b', 'c', 'b', 'd'],
136
- ['b', 'c', 'a', 'e', 'c'],
137
- ['c', 'a', 'b', 'b', 'a'],
138
- ['b', 'e', 'b', 'e', 'd'],
139
- ['d', 'b', 'a', 'd', 'c']
140
- ]
141
- for x in S:
142
- for y in S:
143
- x_idx = index[x]
144
- y_idx = index[y]
145
- if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
146
- counter_example_elements.add(x)
147
- counter_example_elements.add(y)
148
- return self.format_final_answer(", ".join(sorted(counter_example_elements)))
149
-
150
- def maybe_reversed(self, text: str) -> bool:
151
- words = text.split()
152
- reversed_ratio = sum(
153
- 1 for word in words if word[::-1].lower() in {
154
- "if", "you", "understand", "this", "sentence", "write",
155
- "opposite", "of", "the", "word", "left", "answer"
156
- }
157
- ) / len(words)
158
- return reversed_ratio > 0.3
159
-
160
- def solve_riddle(self, question: str) -> str:
161
- question = question[::-1]
162
- if "opposite of the word" in question:
163
- match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
164
- if match:
165
- word = match.group(1).lower()
166
- opposites = {
167
- "left": "right", "up": "down", "hot": "cold",
168
- "true": "false", "yes": "no", "black": "white"
169
- }
170
- opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
171
- return f"FINAL ANSWER: {opposite.upper()}"
172
- return self.format_final_answer("COULD_NOT_SOLVE")
173
-
174
- # --- Evaluation Logic ---
175
- def run_and_submit_all(profile, test_mode):
176
  space_id = os.getenv("SPACE_ID")
177
  if profile:
178
  username = profile
179
  print(f"User logged in: {username}")
180
  else:
181
- return "Please Login to Hugging Face with the button.", None
182
 
183
  api_url = DEFAULT_API_URL
184
  questions_url = f"{api_url}/questions"
@@ -249,19 +113,14 @@ with gr.Blocks() as demo:
249
  3. Click the button to run evaluation and submit your answers.
250
  """
251
  )
252
-
253
- # Simulate OAuth profile with a textbox for user
254
- test_checkbox = gr.Checkbox(label="Enable Test Mode (Skip Submission)", value=False)
255
  run_button = gr.Button("Run Evaluation")
256
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
257
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
258
-
259
- # Simulate OAuth Profile with a mock profile for now
260
- mock_oauth_profile = gr.Textbox(label="Simulated OAuth Profile", value="mock_user", interactive=False)
261
 
262
  run_button.click(
263
  fn=run_and_submit_all,
264
- inputs=[mock_oauth_profile, test_checkbox],
265
  outputs=[status_output, results_table]
266
  )
267
 
 
4
  import pandas as pd
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
 
 
 
 
 
 
 
 
 
 
7
  # --- Constants ---
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
 
10
+ # --- Advanced Agent Logic ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  class BasicAgent:
12
  def __init__(self):
13
  print("BasicAgent initialized.")
14
+ self.client = None # Placeholder for Groq or another API client
15
  self.agent_prompt = (
16
  """You are a general AI assistant. I will ask you a question. Report your thoughts, and
17
+ finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]."""
 
 
 
 
 
 
 
 
18
  )
19
+
20
+ # Assuming some model for queries
21
+ self.llm = AutoModelForCausalLM.from_pretrained("gpt2")
22
+ self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
23
+
 
 
24
  def query_groq(self, question: str) -> str:
25
+ # Placeholder for Groq query handling
26
+ return f"FINAL ANSWER: {question}"
 
 
 
 
 
 
 
 
 
 
27
 
28
  def query_tools(self, question: str) -> str:
29
+ # Placeholder for using tools
30
+ return f"FINAL ANSWER: {question}"
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  def __call__(self, question: str) -> str:
33
+ # Decide based on the question type, here we use placeholder logic
 
 
 
 
 
34
  if "use tools" in question.lower():
35
  return self.query_tools(question)
36
  return self.query_groq(question)
37
 
38
+ # --- Evaluation and Submission Logic ---
39
+ def run_and_submit_all(profile):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  space_id = os.getenv("SPACE_ID")
41
  if profile:
42
  username = profile
43
  print(f"User logged in: {username}")
44
  else:
45
+ return "Please provide a username.", None
46
 
47
  api_url = DEFAULT_API_URL
48
  questions_url = f"{api_url}/questions"
 
113
  3. Click the button to run evaluation and submit your answers.
114
  """
115
  )
116
+ profile_input = gr.Textbox(label="Enter Username", placeholder="Enter your username", interactive=True)
 
 
117
  run_button = gr.Button("Run Evaluation")
118
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
119
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
 
 
 
120
 
121
  run_button.click(
122
  fn=run_and_submit_all,
123
+ inputs=[profile_input],
124
  outputs=[status_output, results_table]
125
  )
126