Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- BasicAgent Class --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.llm = AutoModelForCausalLM.from_pretrained("gpt2") | |
self.tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
self.agent_prompt = ( | |
"You are a general AI assistant. I will ask you a question. " | |
"Finish your answer with the format: FINAL ANSWER: [YOUR FINAL ANSWER]." | |
) | |
def __call__(self, question: str) -> str: | |
prompt = f"{self.agent_prompt}\n\nQuestion: {question}" | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
outputs = self.llm.generate(**inputs, max_new_tokens=50) | |
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
final = result.split("FINAL ANSWER:")[-1].strip() | |
return f"FINAL ANSWER: {final}" if final else "FINAL ANSWER: UNKNOWN" | |
# --- Run and Submit Function --- | |
def run_and_submit_all(profile): | |
space_id = os.getenv("SPACE_ID", "your-username/your-space") # fallback | |
if not profile or not getattr(profile, "username", None): | |
return "β Please log in to Hugging Face first.", None | |
username = profile.username | |
agent = BasicAgent() | |
try: | |
questions = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15).json() | |
except Exception as e: | |
return f"β Error fetching questions: {e}", None | |
answers = [] | |
log = [] | |
for q in questions: | |
task_id = q.get("task_id") | |
question = q.get("question") | |
if not task_id or not question: | |
continue | |
try: | |
answer = agent(question) | |
answers.append({"task_id": task_id, "submitted_answer": answer}) | |
log.append({"Task ID": task_id, "Question": question, "Submitted Answer": answer}) | |
except Exception as e: | |
log.append({"Task ID": task_id, "Question": question, "Submitted Answer": f"ERROR: {e}"}) | |
if not answers: | |
return "β οΈ No answers were generated.", pd.DataFrame(log) | |
submission = { | |
"username": username.strip(), | |
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", | |
"answers": answers | |
} | |
try: | |
r = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=30) | |
r.raise_for_status() | |
res = r.json() | |
return ( | |
f"β Submission Successful!\n" | |
f"User: {res.get('username')}\n" | |
f"Score: {res.get('score', 'N/A')}% " | |
f"({res.get('correct_count', '?')}/{res.get('total_attempted', '?')})\n" | |
f"Message: {res.get('message', '')}" | |
), pd.DataFrame(log) | |
except Exception as e: | |
return f"β Submission failed: {e}", pd.DataFrame(log) | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation") | |
gr.Markdown("Login with Hugging Face and click the button to run evaluation and submit your answers.") | |
profile = gr.LoginButton() | |
run_button = gr.Button("Run and Submit") | |
status_output = gr.Textbox(label="Submission Status", lines=4) | |
results_table = gr.DataFrame(label="Answers Submitted") | |
run_button.click(fn=run_and_submit_all, inputs=[profile], outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
demo.launch() |