Spaces:
Runtime error
Runtime error
File size: 6,662 Bytes
6b9c0e4 72f623a 6b9c0e4 72f623a e197f92 72f623a 6b9c0e4 72f623a 6b9c0e4 72f623a e197f92 ca10202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from groq import Groq
import os
import re
# Define the tools
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return up to 2 results."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n".join([doc.page_content for doc in docs])
@tool
def web_search(query: str) -> str:
"""Search the web using Tavily."""
docs = TavilySearchResults(max_results=3).invoke(query)
return "\n\n".join([doc.page_content for doc in docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv and return up to 3 results."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n".join([doc.page_content[:1000] for doc in docs])
# Tool-based LangGraph builder
def build_tool_graph(system_prompt):
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
llm_with_tools = llm.bind_tools([wiki_search, web_search, arvix_search])
def assistant(state: MessagesState):
return {"messages": [llm_with_tools.invoke(state["messages"]) ]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode([wiki_search, web_search, arvix_search]))
builder.set_entry_point("assistant")
builder.set_finish_point("assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
self.agent_prompt = (
"""You are a general AI assistant. I will ask you a question. Report your thoughts, and
finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated
list of numbers and/or strings.
If you are asked for a number, don't use comma to write your number neither use units such as $
or percent sign unless specified otherwise.
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the
digits in plain text unless specified otherwise.
If you are asked for a comma separated list, apply the above rules depending of whether the element
to be put in the list is a number or a string."""
)
self.tool_chain = build_tool_graph(self.agent_prompt)
def format_final_answer(self, answer: str) -> str:
cleaned = " ".join(answer.split())
return f"FINAL ANSWER: {cleaned}"
def query_groq(self, question: str) -> str:
full_prompt = f"{self.agent_prompt}\n\nQuestion: {question}"
try:
response = self.client.chat.completions.create(
model="llama3-8b-8192",
messages=[{"role": "user", "content": full_prompt}]
)
answer = response.choices[0].message.content
print(f"[Groq Raw Response]: {answer}")
return self.format_final_answer(answer).upper()
except Exception as e:
print(f"[Groq ERROR]: {e}")
return self.format_final_answer("GROQ_ERROR")
def query_tools(self, question: str) -> str:
try:
input_state = {
"messages": [
SystemMessage(content=self.agent_prompt),
HumanMessage(content=question)
]
}
result = self.tool_chain.invoke(input_state)
final_msg = result["messages"][-1].content
print(f"[LangGraph Final Response]: {final_msg}")
return self.format_final_answer(final_msg)
except Exception as e:
print(f"[LangGraph ERROR]: {e}")
return self.format_final_answer("TOOL_ERROR")
def __call__(self, question: str) -> str:
print(f"Received question: {question[:50]}...")
if "commutative" in question.lower():
return self.check_commutativity()
if self.maybe_reversed(question):
print("Detected likely reversed riddle.")
return self.solve_riddle(question)
if "use tools" in question.lower():
return self.query_tools(question)
return self.query_groq(question)
def check_commutativity(self):
S = ['a', 'b', 'c', 'd', 'e']
counter_example_elements = set()
index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
self.operation_table = [
['a', 'b', 'c', 'b', 'd'],
['b', 'c', 'a', 'e', 'c'],
['c', 'a', 'b', 'b', 'a'],
['b', 'e', 'b', 'e', 'd'],
['d', 'b', 'a', 'd', 'c']
]
for x in S:
for y in S:
x_idx = index[x]
y_idx = index[y]
if self.operation_table[x_idx][y_idx] != self.operation_table[y_idx][x_idx]:
counter_example_elements.add(x)
counter_example_elements.add(y)
return self.format_final_answer(", ".join(sorted(counter_example_elements)))
def maybe_reversed(self, text: str) -> bool:
words = text.split()
reversed_ratio = sum(
1 for word in words if word[::-1].lower() in {
"if", "you", "understand", "this", "sentence", "write",
"opposite", "of", "the", "word", "left", "answer"
}
) / len(words)
return reversed_ratio > 0.3
def solve_riddle(self, question: str) -> str:
question = question[::-1]
if "opposite of the word" in question:
match = re.search(r"opposite of the word ['\"](\w+)['\"]", question)
if match:
word = match.group(1).lower()
opposites = {
"left": "right", "up": "down", "hot": "cold",
"true": "false", "yes": "no", "black": "white"
}
opposite = opposites.get(word, f"UNKNOWN_OPPOSITE_OF_{word}")
return f"FINAL ANSWER: {opposite.upper()}"
return self.format_final_answer("COULD_NOT_SOLVE") |